Menu Close

let-f-x-arctan-x-3-1-calculate-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-3-calculate-0-1-arctan-x-3-dx-




Question Number 67187 by mathmax by abdo last updated on 23/Aug/19
let f(x) =arctan(x^3 )  1)calculate f^((n)) (x)and f^((n)) (0)  2) developp f at integr serie  3) calculate ∫_0 ^1  arctan(x^3 )dx
letf(x)=arctan(x3)1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie3)calculate01arctan(x3)dx
Commented by mathmax by abdo last updated on 28/Aug/19
1) f(x) =arctan(x^3 ) ⇒f^′ (x) =((3x^2 )/(1+x^6 )) ⇒f^((n)) (x)=(((3x^2 )/(1+x^6 )))^((n−1))   let decompose inside C(x) F(x) =((3x^2 )/(x^6  +1))  z^6  +1 =0 ⇒z^6 =−1 =e^(i(2k+1)π)    so if z=r e^(iθ)  we get r=1 and  6θ =e^(i(2k+1)π)  ⇒ θ =e^((i(2k+1)π)/6)   so the poles of F are  Z_k =e^((i(2k+1)π)/6)     k∈[[0,5]]    Z_0 =e^((iπ)/6)   , Z_1 =e^(i(π/2))  =i  Z_2 =e^((i5π)/6)   ,   Z_3 = e^((i7π)/6)  ,  Z_4 = e^((i9π)/6)    ,  Z_5 = e^((i11π)/6)   f^((n)) (x) =Σ_(k=0) ^(n−1)   C_(n−1) ^k (3x^2 )^((k)) ((1/(x^6 +1)))^((n−1−k))    (leibniz)  =3x^2 ×{(1/(x^6  +1))}^((n−1))  +(n−1)(6x){(1/(x^6  +1))}^((n−2))   +6 C_(n−1) ^2    {(1/(x^6  +1))}^((n−3))   let find {(1/(x^6  +1))}^((k))   with k from N  wr have G(x) =(1/(x^6  +1)) =Σ_(i=0) ^5  (λ_i /(x−z_i ))  λ_i =(1/(6z_i ^5 )) =−(1/6)z_i  ⇒G(x) =−(1/6)Σ_(i=0) ^5  (z_i /(x−z_i )) ⇒  G^((k)) (x) =−(1/6)Σ_(i=0) ^5 z_i ×(((−1)^k k!)/((x−z_i )^(k+1) )) ⇒  G^((n−1)) (x) =−(1/6)Σ_(i=0) ^5  z_i  ×(((−1)^(n−1) (n−1)!)/((x−z_i )^n ))  G^((n−2)) (x) =−(1/6)Σ_(i=0) ^5  z_i × (((−1)^(n−2) (n−2)!)/((x−z_i )^(n−1) ))  G^((n−3)) (x) =−(1/6)Σ_(i=0) ^5 z_i  ×(((−1)^(n−3) (n−3)!)/((x−z_i )^(n−2) ))  so the value of  f^((n)) (x) is determined.
1)f(x)=arctan(x3)f(x)=3x21+x6f(n)(x)=(3x21+x6)(n1)letdecomposeinsideC(x)F(x)=3x2x6+1z6+1=0z6=1=ei(2k+1)πsoifz=reiθwegetr=1and6θ=ei(2k+1)πθ=ei(2k+1)π6sothepolesofFareZk=ei(2k+1)π6k[[0,5]]Z0=eiπ6,Z1=eiπ2=iZ2=ei5π6,Z3=ei7π6,Z4=ei9π6,Z5=ei11π6f(n)(x)=k=0n1Cn1k(3x2)(k)(1x6+1)(n1k)(leibniz)=3x2×{1x6+1}(n1)+(n1)(6x){1x6+1}(n2)+6Cn12{1x6+1}(n3)letfind{1x6+1}(k)withkfromNwrhaveG(x)=1x6+1=i=05λixziλi=16zi5=16ziG(x)=16i=05zixziG(k)(x)=16i=05zi×(1)kk!(xzi)k+1G(n1)(x)=16i=05zi×(1)n1(n1)!(xzi)nG(n2)(x)=16i=05zi×(1)n2(n2)!(xzi)n1G(n3)(x)=16i=05zi×(1)n3(n3)!(xzi)n2sothevalueoff(n)(x)isdetermined.

Leave a Reply

Your email address will not be published. Required fields are marked *