Menu Close

Let-f-x-be-a-function-such-that-f-1-x-x-3-f-x-0-What-is-1-1-f-x-dx-equal-to-a-2f-1-b-0-c-2f-1-d-4f-1-




Question Number 12302 by Gaurav3651 last updated on 18/Apr/17
Let f(x) be a function such that  f′(1/x)+x^3 f′(x)=0.  What is ∫_(−1) ^1 f(x)dx equal to?  (a)  2f(1)  (b)  0  (c)  2f(−1)  (d)  4f(1)
Letf(x)beafunctionsuchthatf(1/x)+x3f(x)=0.Whatis11f(x)dxequalto?(a)2f(1)(b)0(c)2f(1)(d)4f(1)
Answered by mrW1 last updated on 18/Apr/17
f′(1/x)=−x^3 f′(x)  −(1/x^2 )f′((1/x))=xf′(x)  ∫[−(1/x^2 )f′((1/x))]dx=∫xf′(x)dx  ∫f′((1/x))d((1/x))=∫xd[f(x)]+C  f((1/x))=xf(x)−∫f(x)dx+C  ⇒ ∫f(x)dx=xf(x)−f((1/x))+C  ∫_(−1) ^1 f(x)dx=[xf(x)−f((1/x))]_(−1) ^1   =[1×f(1)−f(1)]−[−1×f(−1)−f(−1)]  =2f(−1)    ⇒ Answer (c)
f(1/x)=x3f(x)1x2f(1x)=xf(x)[1x2f(1x)]dx=xf(x)dxf(1x)d(1x)=xd[f(x)]+Cf(1x)=xf(x)f(x)dx+Cf(x)dx=xf(x)f(1x)+C11f(x)dx=[xf(x)f(1x)]11=[1×f(1)f(1)][1×f(1)f(1)]=2f(1)Answer(c)

Leave a Reply

Your email address will not be published. Required fields are marked *