Menu Close

let-f-x-dt-t-2-2t-x-2-4-with-x-gt-1-and-n-integr-natural-1-find-a-explicit-form-for-f-x-2-determine-also-g-x-dt-t-2-2t-x-2-5-3-find-the-values




Question Number 70870 by Abdo msup. last updated on 09/Oct/19
let f(x)=∫_(−∞) ^(+∞)   (dt/((t^2 −2t +x^2 )^4 ))  with  ∣x∣>1  and n integr natural  1)find a explicit form for f(x)  2) determine also g(x)=∫_(−∞) ^(+∞)   (dt/((t^2 −2t +x^2 )^5 ))  3)find the values of integrals   ∫_(−∞) ^(+∞)  (dt/((t^2 −2t +3)^4 ))  and ∫_(−∞) ^(+∞)  (dt/((t^2 −2t +3)^5 ))
letf(x)=+dt(t22t+x2)4withx∣>1andnintegrnatural1)findaexplicitformforf(x)2)determinealsog(x)=+dt(t22t+x2)53)findthevaluesofintegrals+dt(t22t+3)4and+dt(t22t+3)5
Commented by mathmax by abdo last updated on 13/Oct/19
1) f(x)=∫_(−∞) ^(+∞)  (dt/((t^2 −2t +x^2 )^4 )) let ϕ(z)=(1/((z^2 −2z +x^2 )^4 ))  z^2 −2z+x^2 =0 →Δ^′ =1−x^2 <0 ⇒Δ^′ =(i(√(x^2 −1)))^2   z_1 =1+i(√(x^2 −1))  and z_2 =1−i(√(x^2 −1))  ∣z_1 ∣=(√(1+x^2 −1))=∣x∣ ⇒z_1 =∣x∣ e^(iarctan((√(x^2 −1))))   z_2 =∣x∣ e^(−iarctan((√(x^2 −1))))   ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ  Res(ϕ,∣x∣e^(iarctan((√(x^2 −1)))) )  Res(ϕ,∣x∣ e^(iarctan((√(x^2 −1))))   =lim_(z→∣x∣ e^(iarctan((√(x^2 −1)))) )     (1/((4−1)!)){(z−∣x∣e^(iarctan((√(x^2 −1)))) )^4 ϕ(z)}^((3))   =lim_(z→(...))    (1/(3!)){  (1/((z−z_2 )^4 ))}^((3))  ....be continued...
1)f(x)=+dt(t22t+x2)4letφ(z)=1(z22z+x2)4z22z+x2=0Δ=1x2<0Δ=(ix21)2z1=1+ix21andz2=1ix21z1∣=1+x21=∣xz1=∣xeiarctan(x21)z2=∣xeiarctan(x21)+φ(z)dz=2iπRes(φ,xeiarctan(x21))Res(φ,xeiarctan(x21)=limz→∣xeiarctan(x21)1(41)!{(zxeiarctan(x21))4φ(z)}(3)=limz()13!{1(zz2)4}(3).becontinued
Commented by mathmax by abdo last updated on 13/Oct/19
{(z−z_2 )^(−4) }^((3)) ={−4(z−z_2 )^(−5) }^((2)) ={20(z−z_2 )^(−6) }^((1))   ={−120(z−z_2 )^(−7) } ⇒  Res(ϕ,∣x∣ e^(iarctan((√(x^2 −1))) )=(1/6)(−120)(z_1 −z_2 )^(−7)   =−20 (2iIm(z_1 ))^(−7)  =−20(2isin(∣x∣arctan((√(x^2 −1))))^(−7)   =((−20)/((2i)^7  sin^7 (∣x∣ arctan((√(x^2 −1)))))) =((−20)/(2^7 (−i)sin^7 (∣x∣arctan((√(x^2 −1)))))  i^7 =(i^2 )^3 i =−i  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ  ((2^2 ×5)/(2^3 ×2^4 (i)sin^7 (∣x∣ arctan((√(x^2 −1))))))  =((5π)/(16 sin^7 (∣x∣ arctan((√(x^2 −1))))) ⇒  f(x)=((5π)/(16 sin^7 (∣x∣arctan((√(x^2 −1)))))
{(zz2)4}(3)={4(zz2)5}(2)={20(zz2)6}(1)={120(zz2)7}Res(φ,xeiarctan(x21)=16(120)(z1z2)7=20(2iIm(z1))7=20(2isin(xarctan(x21))7=20(2i)7sin7(xarctan(x21))=2027(i)sin7(xarctan(x21)i7=(i2)3i=i+φ(z)dz=2iπ22×523×24(i)sin7(xarctan(x21))=5π16sin7(xarctan(x21)f(x)=5π16sin7(xarctan(x21)
Commented by mathmax by abdo last updated on 13/Oct/19
2) we have f^′ (x)=−∫_(−∞) ^(+∞)  ((4(2x)(t^2 −2t+x^2 )^3 )/((t^2 −2t+x^2 )^8 ))dt  =−8x ∫_(−∞) ^(+∞)    (dx/((t^2 −2t +x^2 )^5 )) =−8x g(x) ⇒g(x)=−(1/(8x))f^′ (x)  rest the calculus of f^′ (x) ....
2)wehavef(x)=+4(2x)(t22t+x2)3(t22t+x2)8dt=8x+dx(t22t+x2)5=8xg(x)g(x)=18xf(x)restthecalculusoff(x).
Commented by mathmax by abdo last updated on 13/Oct/19
∫_(−∞) ^(+∞)   (dt/((t^2 −2t +3)^4 )) =f((√3)) =((5π)/(16sin^7 ((√3)arctan((√(3−1)))))  =((5π)/(16 sin^7 ((√3)arctan(2))))
+dt(t22t+3)4=f(3)=5π16sin7(3arctan(31)=5π16sin7(3arctan(2))

Leave a Reply

Your email address will not be published. Required fields are marked *