Menu Close

let-f-x-e-2x-ln-1-x-2-developp-f-at-integr-serie-




Question Number 68239 by mathmax by abdo last updated on 07/Sep/19
let f(x) =e^(−2x) ln(1+x^2 )  developp f at integr serie.
letf(x)=e2xln(1+x2)developpfatintegrserie.
Commented by mathmax by abdo last updated on 09/Sep/19
first let determine f^((n)) (x)   we have  f^((n)) (x)=Σ_(k=0) ^n C_n ^k  (ln(1+x^2 ))^((k)) (e^(−2x) )^((n−k))   =ln(1+x^2 )(−2)^n e^(−2x)  +Σ_(k=1) ^n  C_n ^k (ln(1+x^2 ))^((k)) (−2)^(n−k) e^(−2x)   let  find (ln(1+x^2 ))^((k))  for k≥1  let w(x)=ln(1+x^2 ) we have  w^′ (x) =((2x)/(1+x^2 )) =((2x)/((x−i)(x+i))) =(1/(x+i))+(1/(x−i)) ⇒  w^((k)) (x) =((1/(x+i)))^((k−1))  +((1/(x−i)))^((k−1))  =(((−1)^(k−1) (k−1)!)/((x+i)^k ))+(((−1)^(k−1) (k−1))/((x−i)^k ))  =(−1)^(k−1) (k−1)!{ (1/((x+i)^k ))+(1/((x−i)^k ))}  =(−1)^(k−1) (k−1)!{(((x+i)^k +(x−i)^k )/((x^2  +1)^k ))}=(((−1)^(k−1) (k−1)!2Re(x+i)^k )/((x^2  +1)^k ))  we have x+i =(√(1+x^2 ))e^(iarctan((1/x)))  ⇒(x+i)^k  =(1+x^2 )^(k/2)  e^(ikarctan((1/x)))   w^((k)) (x) =2(((−1)^(k−1) (k−1)!(1+x^2 )^(k/2) cos(k arctan((1/x))))/((x^2  +1)^k )) ⇒  f^((n)) (x)=(−2)^n e^(−2x) ln(1+x^2 )  +Σ_(k=1) ^n  C_n ^k   ((2(−1)^(k−1) (k−1)!(1+x^2 )^(k/2) cos(karctan((1/x))))/((x^2  +1)^k ))(−2)^(n−k) e^(−2x)
firstletdeterminef(n)(x)wehavef(n)(x)=k=0nCnk(ln(1+x2))(k)(e2x)(nk)=ln(1+x2)(2)ne2x+k=1nCnk(ln(1+x2))(k)(2)nke2xletfind(ln(1+x2))(k)fork1letw(x)=ln(1+x2)wehavew(x)=2x1+x2=2x(xi)(x+i)=1x+i+1xiw(k)(x)=(1x+i)(k1)+(1xi)(k1)=(1)k1(k1)!(x+i)k+(1)k1(k1)(xi)k=(1)k1(k1)!{1(x+i)k+1(xi)k}=(1)k1(k1)!{(x+i)k+(xi)k(x2+1)k}=(1)k1(k1)!2Re(x+i)k(x2+1)kwehavex+i=1+x2eiarctan(1x)(x+i)k=(1+x2)k2eikarctan(1x)w(k)(x)=2(1)k1(k1)!(1+x2)k2cos(karctan(1x))(x2+1)kf(n)(x)=(2)ne2xln(1+x2)+k=1nCnk2(1)k1(k1)!(1+x2)k2cos(karctan(1x))(x2+1)k(2)nke2x
Commented by mathmax by abdo last updated on 09/Sep/19
f^((n)) (0) =2Σ_(k=1) ^(n )  C_n ^k   (−1)^(k−1) (k−1)!cos(((kπ)/2))(−2)^(n−k)   f(x) =f(0) +Σ_(n=1) ^∞   ((f^((n)) (0))/(n!)) x^n   =Σ_(n=1) ^∞ (2/(n!))(Σ_(k=1) ^n  C_n ^k (−1)^(k−1) (k−1)!(−2)^(n−k)  cos(((kπ)/2)))x^n
f(n)(0)=2k=1nCnk(1)k1(k1)!cos(kπ2)(2)nkf(x)=f(0)+n=1f(n)(0)n!xn=n=12n!(k=1nCnk(1)k1(k1)!(2)nkcos(kπ2))xn

Leave a Reply

Your email address will not be published. Required fields are marked *