Question Number 68239 by mathmax by abdo last updated on 07/Sep/19
$${let}\:{f}\left({x}\right)\:={e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right) \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Commented by mathmax by abdo last updated on 09/Sep/19
$${first}\:{let}\:{determine}\:{f}^{\left({n}\right)} \left({x}\right)\:\:\:{we}\:{have} \\ $$$${f}^{\left({n}\right)} \left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} {C}_{{n}} ^{{k}} \:\left({ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right)^{\left({k}\right)} \left({e}^{−\mathrm{2}{x}} \right)^{\left({n}−{k}\right)} \\ $$$$={ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(−\mathrm{2}\right)^{{n}} {e}^{−\mathrm{2}{x}} \:+\sum_{{k}=\mathrm{1}} ^{{n}} \:{C}_{{n}} ^{{k}} \left({ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right)^{\left({k}\right)} \left(−\mathrm{2}\right)^{{n}−{k}} {e}^{−\mathrm{2}{x}} \\ $$$${let}\:\:{find}\:\left({ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right)^{\left({k}\right)} \:{for}\:{k}\geqslant\mathrm{1}\:\:{let}\:{w}\left({x}\right)={ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:{we}\:{have} \\ $$$${w}^{'} \left({x}\right)\:=\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\:=\frac{\mathrm{2}{x}}{\left({x}−{i}\right)\left({x}+{i}\right)}\:=\frac{\mathrm{1}}{{x}+{i}}+\frac{\mathrm{1}}{{x}−{i}}\:\Rightarrow \\ $$$${w}^{\left({k}\right)} \left({x}\right)\:=\left(\frac{\mathrm{1}}{{x}+{i}}\right)^{\left({k}−\mathrm{1}\right)} \:+\left(\frac{\mathrm{1}}{{x}−{i}}\right)^{\left({k}−\mathrm{1}\right)} \:=\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!}{\left({x}+{i}\right)^{{k}} }+\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)}{\left({x}−{i}\right)^{{k}} } \\ $$$$=\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!\left\{\:\frac{\mathrm{1}}{\left({x}+{i}\right)^{{k}} }+\frac{\mathrm{1}}{\left({x}−{i}\right)^{{k}} }\right\} \\ $$$$=\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!\left\{\frac{\left({x}+{i}\right)^{{k}} +\left({x}−{i}\right)^{{k}} }{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{{k}} }\right\}=\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!\mathrm{2}{Re}\left({x}+{i}\right)^{{k}} }{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{{k}} } \\ $$$${we}\:{have}\:{x}+{i}\:=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }{e}^{{iarctan}\left(\frac{\mathrm{1}}{{x}}\right)} \:\Rightarrow\left({x}+{i}\right)^{{k}} \:=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{{k}}{\mathrm{2}}} \:{e}^{{ikarctan}\left(\frac{\mathrm{1}}{{x}}\right)} \\ $$$${w}^{\left({k}\right)} \left({x}\right)\:=\mathrm{2}\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{{k}}{\mathrm{2}}} {cos}\left({k}\:{arctan}\left(\frac{\mathrm{1}}{{x}}\right)\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{{k}} }\:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left({x}\right)=\left(−\mathrm{2}\right)^{{n}} {e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right) \\ $$$$+\sum_{{k}=\mathrm{1}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:\frac{\mathrm{2}\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{{k}}{\mathrm{2}}} {cos}\left({karctan}\left(\frac{\mathrm{1}}{{x}}\right)\right)}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{{k}} }\left(−\mathrm{2}\right)^{{n}−{k}} {e}^{−\mathrm{2}{x}} \\ $$
Commented by mathmax by abdo last updated on 09/Sep/19
$${f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\mathrm{2}\sum_{{k}=\mathrm{1}} ^{{n}\:} \:{C}_{{n}} ^{{k}} \:\:\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)\left(−\mathrm{2}\right)^{{n}−{k}} \\ $$$${f}\left({x}\right)\:={f}\left(\mathrm{0}\right)\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{f}^{\left({n}\right)} \left(\mathrm{0}\right)}{{n}!}\:{x}^{{n}} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{2}}{{n}!}\left(\sum_{{k}=\mathrm{1}} ^{{n}} \:{C}_{{n}} ^{{k}} \left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!\left(−\mathrm{2}\right)^{{n}−{k}} \:{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)\right){x}^{{n}} \\ $$