Question Number 74502 by mathmax by abdo last updated on 25/Nov/19
$${let}\:{f}\left({x}\right)={e}^{−{nx}} {ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right){determine}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie}\:\:\:\left({n}\:{integr}\:{natural}\right) \\ $$
Commented by mathmax by abdo last updated on 25/Nov/19
$$\left.\mathrm{1}\right)\:{f}^{\left({p}\right)} \left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{p}} \:{C}_{{p}} ^{{k}} \left({ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right)^{\left({k}\right)} \:\left({e}^{−{nx}} \right)^{\left({p}−{k}\right)} \\ $$$$={ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(−{n}\right)^{{p}} \:{e}^{−{nx}} \:+\sum_{{k}=\mathrm{1}} ^{{p}} \:{C}_{{p}} ^{{k}} \left({ln}\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\right)^{\left({k}\right)} \left(−{n}\right)^{{p}−{k}} \:{e}^{−{nx}} \\ $$$${we}\:{have}\:{ln}^{'} \left({x}^{\mathrm{2}} +\mathrm{1}\right)\:=\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{1}}\:=\frac{\mathrm{1}}{{x}+{i}}+\frac{\mathrm{1}}{{x}−{i}}\:\Rightarrow \\ $$$$\left({ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)\right)^{\left({k}\right)} =\left(\frac{\mathrm{1}}{{x}+{i}}+\frac{\mathrm{1}}{{x}−{i}}\right)^{\left({k}−\mathrm{1}\right)} \:=\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!}{\left({x}+{i}\right)^{{k}} }\:+\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!}{\left({x}−{i}\right)^{{k}} } \\ $$$$=\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!\left(\frac{\mathrm{1}}{\left({x}+{i}\right)^{{k}} }+\frac{\mathrm{1}}{\left({x}−{i}\right)^{{k}} }\right)=\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!×\frac{\left({x}+{i}\right)^{{k}} +\left({x}−{i}\right)^{{k}} }{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{{k}} } \\ $$$${f}^{\left({p}\right)} \left({x}\right)=\left(−{n}\right)^{{p}} \:{e}^{−{nx}} {ln}\left({x}^{\mathrm{2}} \:+\mathrm{1}\right) \\ $$$$+\sum_{{k}=\mathrm{1}} ^{{p}} \:{C}_{{p}} ^{{k}} \left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!×\frac{\left({x}+{i}\right)^{{k}} \:+\left({x}−{i}\right)^{{k}} }{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{{k}} }\left(−{n}\right)^{{p}−{k}} \:{e}^{−{nx}} \\ $$
Commented by mathmax by abdo last updated on 25/Nov/19
$${f}^{\left({n}\right)} \left({x}\right)=\left(−{n}\right)^{{n}} \:{e}^{−{nx}} {ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$$+\sum_{{k}=\mathrm{1}} ^{{n}} \:{C}_{{n}} ^{{k}} \left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!×\frac{\left({x}+{i}\right)^{{k}} \:+\left({x}−{i}\right)^{{k}} }{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{{k}} }\left(−{n}\right)^{{n}−{k}} \:{e}^{−{nx}} \\ $$$${and}\: \\ $$$${f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\sum_{{k}=\mathrm{1}} ^{{n}} \:{C}_{{n}} ^{{k}} \left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!×\left({i}^{{k}} \:+\left(−{i}\right)^{{k}} \right)\left(−{n}\right)^{{n}−{k}} \:{e}^{−{nx}} \\ $$$${i}^{{k}} \:+\left(−{i}\right)^{{k}} \:=\mathrm{2}{Re}\left({i}^{{k}} \right)\:=\mathrm{2}{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)\:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\mathrm{2}\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {n}^{{n}} \:{e}^{−{nx}} \:\sum_{{k}=\mathrm{1}} ^{{n}} \:\left({k}−\mathrm{1}\right)!\:{C}_{{n}} ^{{k}} \:{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right) \\ $$
Commented by mathmax by abdo last updated on 25/Nov/19
$$\left.\mathrm{2}\right){f}\left({x}\right)=\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{{f}^{\left({p}\right)} \left(\mathrm{0}\right)}{{p}!}\:{x}^{{p}} \:\:{we}\:{have}\: \\ $$$${f}^{\left({p}\right)} \left(\mathrm{0}\right)\:=\sum_{{k}=\mathrm{1}} ^{{p}} \:{C}_{{p}} ^{{k}} \left(−\mathrm{1}\right)^{{p}−\mathrm{1}} \left({k}−\mathrm{1}\right)!\frac{\mathrm{2}{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)}{\mathrm{1}}\left({n}\right)^{{p}−{k}} \: \\ $$$$=\mathrm{2}\sum_{{k}=\mathrm{1}} ^{{p}} \:\frac{{p}!}{{k}!\left({p}−{k}\right)!}\left(−\mathrm{1}\right)^{{p}−\mathrm{1}} \left({k}−\mathrm{1}\right)!\:{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)\:{n}^{{p}−{k}} \\ $$$$=\mathrm{2}\left(−\mathrm{1}\right)^{{p}−\mathrm{1}} \:{n}^{{p}} \:\:\sum_{{k}=\mathrm{1}} ^{{p}} \:\:\:\frac{{p}!}{{k}\left({p}−{k}\right)!{n}^{{k}} }\:{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)\:\Rightarrow \\ $$$${f}\left({x}\right)=\mathrm{2}\sum_{{p}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{p}−\mathrm{1}} {n}^{{p}} \left\{\:\sum_{{k}=\mathrm{1}} ^{{p}} \:\:\frac{{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right)}{{k}\:{n}^{{k}} \left({p}−{k}\right)!}\right\}{x}^{{p}} \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 25/Nov/19
$${f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\mathrm{2}\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:{n}^{{n}} \:\sum_{{k}=\mathrm{1}} ^{{n}} \left({k}−\mathrm{1}\right)!{C}_{{n}} ^{{k}} \:{cos}\left(\frac{{k}\pi}{\mathrm{2}}\right). \\ $$
Answered by mind is power last updated on 25/Nov/19
$${ln}^{\left({k}\right)} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)={ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right),{k}=\mathrm{0} \\ $$$$=\left(\frac{\mathrm{1}}{{x}+{i}}+\frac{\mathrm{1}}{{x}−{i}}\right)^{\left({k}−\mathrm{1}\right)} ,{k}\geqslant\mathrm{1} \\ $$$$=\left(\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!}{\left({x}+{i}\right)^{\left({k}\right)} }+\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!}{\left({x}−{i}\right)^{\left({k}\right)} }\right)\: \\ $$$$=\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!.\left(\frac{\left({x}−{i}\right)^{\left({k}−\mathrm{1}\right)} +\left({x}+{i}\right)^{\left({k}−\mathrm{1}\right)} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{k}} }\right) \\ $$$$=\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!.\mathrm{2}{Re}\left(\left({x}+{i}\right)^{\left({k}−\mathrm{1}\right)} \right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{k}} } \\ $$$${x}+{i}=\begin{cases}{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}.{e}^{{iarctan}\left(\frac{\mathrm{1}}{{x}}\right)} ,{x}>\mathrm{0}}\\{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}{e}^{{i}\left(\frac{\pi}{\mathrm{2}}+{arctan}\left(\frac{\mathrm{1}}{{x}}\right)\right)} ,{x}<\mathrm{0}}\end{cases} \\ $$$${x}\geqslant\mathrm{0} \\ $$$$\frac{{d}}{{dx}^{{k}} }\left\{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right\}=\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{{k}−\mathrm{1}}{\mathrm{2}}} \mathrm{2}{Re}\left\{{e}^{{i}\left({k}−\mathrm{1}\right){arctan}\left(\frac{\mathrm{1}}{{x}}\right)} \right\}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{k}} },{k}\geqslant\mathrm{1} \\ $$$${f}\left({x}\right)={e}^{−{nx}} {ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right) \\ $$$${f}^{\left({n}\right)} \left({x}\right)=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{n}} ^{{k}} .\left({e}^{−{nx}} \right)^{\left({n}−{k}\right)} .\left({ln}^{\left({k}\right)} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right) \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{C}_{{n}} ^{{k}} \left(−{n}\right)^{\left({n}−{k}\right)} .{e}^{−{nx}} .\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \left({k}−\mathrm{1}\right)!.{cos}\left(\left({k}−\mathrm{1}\right)\left({arctan}\left(\frac{\mathrm{1}}{{x}}\right)\right)\right.}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{{k}+\mathrm{1}}{\mathrm{2}}} }+\left(−{n}\right)^{{n}} {e}^{−{nx}} {ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right) \\ $$$${f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{C}_{{n}} ^{{k}} \left(−{n}\right)^{{n}−{k}} .\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} .\left({k}−\mathrm{1}\right)!.{cos}\left(\left({k}−\mathrm{1}\right)\frac{\pi}{\mathrm{2}}\right) \\ $$$$\left.\mathrm{2}\right) \\ $$$${f}\left({x}\right)=\underset{{j}=\mathrm{0}} {\overset{+\infty} {\sum}}\:\frac{{f}^{{j}} \left(\mathrm{0}\right){x}^{{j}} }{{j}!} \\ $$$${f}\left({x}\right)=\underset{{j}\geqslant\mathrm{1}} {\sum}\frac{{f}^{{j}} \left(\mathrm{0}\right){x}^{{j}} }{{j}!}=\underset{{j}\geqslant\mathrm{1}} {\sum}.\left(\underset{{k}=\mathrm{1}} {\overset{{j}} {\sum}}{C}_{{j}} ^{{k}} .\left(−{n}\right)^{{j}−{k}} \left(−\mathrm{1}\right)^{{k}−\mathrm{1}} {cos}\left(\frac{{k}−\mathrm{1}}{\mathrm{2}}\pi\right)\right){x}^{{j}} .\frac{\mathrm{1}}{{j}!} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$