Menu Close

let-f-x-e-x-ln-1-x-2-1-calculate-f-n-0-2-developp-f-at-integr-serie-




Question Number 66795 by mathmax by abdo last updated on 19/Aug/19
let f(x) =e^(−x) ln(1+x^2 )  1) calculate f^((n)) (0)  2) developp f at integr serie
letf(x)=exln(1+x2)1)calculatef(n)(0)2)developpfatintegrserie
Commented by mathmax by abdo last updated on 26/Aug/19
1) we have f(x) =e^(−x) ln(1+x^2 ) ⇒  f^((n)) (x) =Σ_(k=0) ^n  C_n ^k (ln(1+x^2 ))^((k))  (e^(−x) )^((n−k))   =(−1)^n  e^(−x) ln(1+x^2 ) +Σ_(k=1) ^n  C_n ^k {ln(1+x^2 )}^((k)) (e^(−x) )^((n−k))   (ln(1+x^2 ))^((1))  =((2x)/(1+x^2 )) ⇒{ln(1+x^2 )}^((k))  =(((2x)/(1+x^2 )))^((k−1))   =(((2x)/((x−i)(x+i))))^((k−1)) ={(1/(x+i))+(1/(x−i))}^((k−1)) =(((−1)^(k−1) (k−1)!)/((x+i)^k ))  +(((−1)^(k−1) (k−1)!)/((x−i)^k )) =(−1)^(k−1) (k−1)!{(1/((x+i)^k ))+(1/((x−i)^k ))}  =(−1)^(k−1) (k−1)!×((2Re((x+i)^k ))/((x^2  +1)^k )) ⇒  f^((n)) (x) =(−1)^n  e^(−x) ln(1+x^2 )  +Σ_(k=1) ^n  C_n ^k    ((2(−1)^(k−1) (k−1)! Re((x+i)^k ))/((x^2  +1)^k ))×(−1)^(n−k)  e^(−x)   ⇒f^((n)) (0) =Σ_(k=1) ^n  C_n ^k  2(−1)^(k−1) (k−1)!cos(((kπ)/2))(−1)^(n−k)   =2Σ_(k=1) ^n  (−1)^(n−1)  C_n ^k   cos(((kπ)/2))
1)wehavef(x)=exln(1+x2)f(n)(x)=k=0nCnk(ln(1+x2))(k)(ex)(nk)=(1)nexln(1+x2)+k=1nCnk{ln(1+x2)}(k)(ex)(nk)(ln(1+x2))(1)=2x1+x2{ln(1+x2)}(k)=(2x1+x2)(k1)=(2x(xi)(x+i))(k1)={1x+i+1xi}(k1)=(1)k1(k1)!(x+i)k+(1)k1(k1)!(xi)k=(1)k1(k1)!{1(x+i)k+1(xi)k}=(1)k1(k1)!×2Re((x+i)k)(x2+1)kf(n)(x)=(1)nexln(1+x2)+k=1nCnk2(1)k1(k1)!Re((x+i)k)(x2+1)k×(1)nkexf(n)(0)=k=1nCnk2(1)k1(k1)!cos(kπ2)(1)nk=2k=1n(1)n1Cnkcos(kπ2)
Commented by mathmax by abdo last updated on 26/Aug/19
f^((n)) (0) =2(−1)^(n−1)  Σ_(k=1) ^n (k−1)! C_n ^k  cos(((kπ)/2))
f(n)(0)=2(1)n1k=1n(k1)!Cnkcos(kπ2)
Commented by mathmax by abdo last updated on 26/Aug/19
2) we have f(x) =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n  =f(o) +Σ_(n=1) ^∞  ((f^((n)) (0))/(n!))x^n   f(x) =2Σ_(n=1) ^∞   (((−1)^(n−1) )/(n!))( Σ_(k=1) ^n  (k−1)! C_n ^k  cos(((kπ)/2)))x^n   =2 Σ_(n=1) ^∞  (−1)^(n−1) (Σ_(k=1) ^n (k−1)!×(1/(k!(n−k)!)))x^n   =2 Σ_(n=1) ^∞  (−1)^(n−1) (Σ_(k=1) ^n  (1/(k(n−k)!)))x^n
2)wehavef(x)=n=0f(n)(0)n!xn=f(o)+n=1f(n)(0)n!xnf(x)=2n=1(1)n1n!(k=1n(k1)!Cnkcos(kπ2))xn=2n=1(1)n1(k=1n(k1)!×1k!(nk)!)xn=2n=1(1)n1(k=1n1k(nk)!)xn

Leave a Reply

Your email address will not be published. Required fields are marked *