let-f-x-e-x-ln-1-x-2-1-calculate-f-n-0-2-developp-f-at-integr-serie- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 66795 by mathmax by abdo last updated on 19/Aug/19 letf(x)=e−xln(1+x2)1)calculatef(n)(0)2)developpfatintegrserie Commented by mathmax by abdo last updated on 26/Aug/19 1)wehavef(x)=e−xln(1+x2)⇒f(n)(x)=∑k=0nCnk(ln(1+x2))(k)(e−x)(n−k)=(−1)ne−xln(1+x2)+∑k=1nCnk{ln(1+x2)}(k)(e−x)(n−k)(ln(1+x2))(1)=2x1+x2⇒{ln(1+x2)}(k)=(2x1+x2)(k−1)=(2x(x−i)(x+i))(k−1)={1x+i+1x−i}(k−1)=(−1)k−1(k−1)!(x+i)k+(−1)k−1(k−1)!(x−i)k=(−1)k−1(k−1)!{1(x+i)k+1(x−i)k}=(−1)k−1(k−1)!×2Re((x+i)k)(x2+1)k⇒f(n)(x)=(−1)ne−xln(1+x2)+∑k=1nCnk2(−1)k−1(k−1)!Re((x+i)k)(x2+1)k×(−1)n−ke−x⇒f(n)(0)=∑k=1nCnk2(−1)k−1(k−1)!cos(kπ2)(−1)n−k=2∑k=1n(−1)n−1Cnkcos(kπ2) Commented by mathmax by abdo last updated on 26/Aug/19 f(n)(0)=2(−1)n−1∑k=1n(k−1)!Cnkcos(kπ2) Commented by mathmax by abdo last updated on 26/Aug/19 2)wehavef(x)=∑n=0∞f(n)(0)n!xn=f(o)+∑n=1∞f(n)(0)n!xnf(x)=2∑n=1∞(−1)n−1n!(∑k=1n(k−1)!Cnkcos(kπ2))xn=2∑n=1∞(−1)n−1(∑k=1n(k−1)!×1k!(n−k)!)xn=2∑n=1∞(−1)n−1(∑k=1n1k(n−k)!)xn Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-1-cos-3arctanx-dx-Next Next post: lim-x-1-p-x-x-2-x-3-x-p-x-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.