Menu Close

let-f-x-g-x-and-h-x-be-functions-R-R-given-by-f-x-x-2-if-x-0-and-x-1-if-x-lt-0-g-x-x-2-4-if-x-2-and-1-2-x-if-x-lt-2-h-x-3-x-if-x-0-and-3-x-if-x-0-Calculate-f-2-f-g-2-f-g-h




Question Number 74355 by Mr. K last updated on 22/Nov/19
let f(x), g(x) and h(x) be functions  R→R, given by  f(x)=x^2 , if x≥0 and x+1 if x<0  g(x)=x^2 −4, if x≥2 and (1/(2−x)) if x<2  h(x)=3^(−x) , if x≤0 and 3^x  if x≥0  Calculate ((f(2)+f(g(2)))/(f(g(h(−1))))).
$${let}\:{f}\left({x}\right),\:{g}\left({x}\right)\:{and}\:{h}\left({x}\right)\:{be}\:{functions} \\ $$$$\mathbb{R}\rightarrow\mathbb{R},\:{given}\:{by} \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} ,\:{if}\:{x}\geqslant\mathrm{0}\:{and}\:{x}+\mathrm{1}\:{if}\:{x}<\mathrm{0} \\ $$$${g}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{4},\:{if}\:{x}\geqslant\mathrm{2}\:{and}\:\frac{\mathrm{1}}{\mathrm{2}−{x}}\:{if}\:{x}<\mathrm{2} \\ $$$${h}\left({x}\right)=\mathrm{3}^{−{x}} ,\:{if}\:{x}\leqslant\mathrm{0}\:{and}\:\mathrm{3}^{{x}} \:{if}\:{x}\geqslant\mathrm{0} \\ $$$${Calculate}\:\frac{{f}\left(\mathrm{2}\right)+{f}\left({g}\left(\mathrm{2}\right)\right)}{{f}\left({g}\left({h}\left(−\mathrm{1}\right)\right)\right)}. \\ $$
Answered by MJS last updated on 23/Nov/19
easy  f(2)=4  g(2)=0 f(g(2))=f(0)=0  h(−1)=3 g(h(−1))=g(3)=5 f(g(h(−1)))=f(5)=25  ((f(2)+f(g(2)))/(f(g(h(−1)))))=(4/(25))
$$\mathrm{easy} \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{4} \\ $$$${g}\left(\mathrm{2}\right)=\mathrm{0}\:{f}\left({g}\left(\mathrm{2}\right)\right)={f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${h}\left(−\mathrm{1}\right)=\mathrm{3}\:{g}\left({h}\left(−\mathrm{1}\right)\right)={g}\left(\mathrm{3}\right)=\mathrm{5}\:{f}\left({g}\left({h}\left(−\mathrm{1}\right)\right)\right)={f}\left(\mathrm{5}\right)=\mathrm{25} \\ $$$$\frac{{f}\left(\mathrm{2}\right)+{f}\left({g}\left(\mathrm{2}\right)\right)}{{f}\left({g}\left({h}\left(−\mathrm{1}\right)\right)\right)}=\frac{\mathrm{4}}{\mathrm{25}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *