Menu Close

let-f-x-ln-2-x-3-if-f-x-a-n-x-n-find-a-n-




Question Number 135384 by Bird last updated on 12/Mar/21
let f(x)=ln(2+x^3 )  if f(x)=Σa_n x^n   find a_n
letf(x)=ln(2+x3)iff(x)=Σanxnfindan
Answered by Dwaipayan Shikari last updated on 12/Mar/21
f(x)=Σ_(n=0) ^∞ ((f^n (0))/(n!))x^n   a_n =((f^n (0))/(n!))  f(x)=log(α^3 +x^3 )=log(α+x)+log(α^2 −αx+x^2 )  =log(α+x)+log(x−β)+log(x−γ)        β=αe^((2πi)/3)  γ=αe^((−2πi)/3)   f′(x)=(1/((α+x)))+(1/(x−β))+(1/(x−γ))  f′′(x)=((−1)/((α+x)^2 ))+((−1)/((x−β)^2 ))−(1/((x−γ)^2 ))  f^n (x)=(−1)^(n+1) (n−1)!((1/((α+x)^n ))+(1/((x−β)^n ))+(1/((x−γ)^n )))  =(−1)^(n+1) (n−1)!((1/((α+x)^n ))+(((x−β)^n +(x−γ)^n )/((α^2 −αx+x^2 )^n )))  a_n =(((−1)^(n+1) )/n)((1/α^n )+(((−1)^n (e^((2πin)/3) +e^(−((2πin)/3)) ))/((α^2 )^n )))    α=(2)^(1/3)   a_n =(((−1)^(n+1) )/n)((1/2^(n/3) )+((2(−1)^n cos(((2πn)/3)))/(((4)^(1/3) )^n )))
f(x)=n=0fn(0)n!xnan=fn(0)n!f(x)=log(α3+x3)=log(α+x)+log(α2αx+x2)=log(α+x)+log(xβ)+log(xγ)β=αe2πi3γ=αe2πi3f(x)=1(α+x)+1xβ+1xγf(x)=1(α+x)2+1(xβ)21(xγ)2fn(x)=(1)n+1(n1)!(1(α+x)n+1(xβ)n+1(xγ)n)=(1)n+1(n1)!(1(α+x)n+(xβ)n+(xγ)n(α2αx+x2)n)an=(1)n+1n(1αn+(1)n(e2πin3+e2πin3)(α2)n)α=23an=(1)n+1n(12n3+2(1)ncos(2πn3)(43)n)
Commented by mathmax by abdo last updated on 12/Mar/21
thank you sir
thankyousir
Answered by Olaf last updated on 12/Mar/21
f(x) = ln(2+x^3 )  f′(x) = ((3x^2 )/(2+x^3 )) = (3/2).(x^2 /(1+((x/2^(1/3) ))^3 ))  f′(x) = (3/2)x^2 Σ_(n=0) ^∞ (−1)^n ((x/2^(1/3) ))^n   f′(x) = (3/2)Σ_(n=0) ^∞ (((−1)^n )/2^(n/3) )x^(n+2)   f(x) = (3/2)Σ_(n=0) ^∞ (((−1)^n )/((n+3)2^(n/3) ))x^(n+3) +C  f(0) = ln(2+0) = ln2 ⇒ C = ln2  f(x) = 3Σ_(n=3) ^∞ (((−1)^n )/(n2^n ))x^n +ln2  a_0  = ln2, a_1  = a_2  = 0 and a_n  = ((3(−1)^n )/(n2^n )), n≥3
f(x)=ln(2+x3)f(x)=3x22+x3=32.x21+(x21/3)3f(x)=32x2n=0(1)n(x21/3)nf(x)=32n=0(1)n2n/3xn+2f(x)=32n=0(1)n(n+3)2n/3xn+3+Cf(0)=ln(2+0)=ln2C=ln2f(x)=3n=3(1)nn2nxn+ln2a0=ln2,a1=a2=0andan=3(1)nn2n,n3
Commented by mathmax by abdo last updated on 12/Mar/21
thank you sir
thankyousir
Answered by mathmax by abdo last updated on 14/Mar/21
a_n =((f^()n)) (0))/(n!))  let determine f^()n)) (0) we have f^′ (x)=((3x^2 )/(x^3  +2))  let α=^3 (√2) ⇒f^′ (x)=((3x^2 )/(x^3  +α^3 ))=((3x^2 )/((x+α)(x^2 −αx +α^2 )))  =(a/(x+α))+((bx +c)/(x^2 −αx +α^2 ))  we have a=((3α^2 )/(3α^2 ))=(3/2)  lim_(x→+∞) xf^′ (x)=3 =a+b ⇒b=3−(3/2)=(3/2)  f^′ (0)=0 =(a/α)+(c/α^2 ) ⇒o=αa +c ⇒c=−α.(3/2) ⇒  f^′ (x)=(3/(2(x+α)))+(((3/2)x−((3α)/2))/(x^2 −αx +α^2 )) =(3/(2(x+α)))+(3/2)((x−α)/(x^2 −αx +α^2 ))  let decompose inside C(x) the fraction F(x)=((x−α)/(x^2 −αx +α^2 ))  Δ=α^2 −4α^2  =−3α^2  ⇒z_1 =((α+iα(√3))/2) =α((1/2)+i((√3)/2))=α e^((iπ)/3)   z_2 =αe^(−((iπ)/3))  ⇒F(x)=(a/(x−z_1 ))+(b/(x−z_2 ))(=((x−α)/((x−z_1 )(x−z_2 ))))  a =((z_1 −α)/(z_1 −z_2 ))=((z_1 −α)/(2iα((√3)/2))) =(1/(iα(√3)))(z_1 −α)  b =((z_2 −α)/(z_2 −z_1 )) =−(1/(iα(√3)))(z_2 −α) ⇒  f^′ (x)=(3/(2(x+α)))+((3(z_1 −α))/(2iα(√3)(x−z_1 )))−((3(z_2 −α))/(2iα(√3)(x−z_2 ))) ⇒  f^((n)) (x)=(3/2){(1/(x+α))}^((n−1))  +((3(z_1 −α))/(2i(√3))){(1/(x−z_1 ))}^((n−1)) −((3(z_2 −α))/(2i(√3))){(1/(x−z_2 ))}^((n−1))   =(3/2)(((−1)^(n−1) (n−1)!)/((x+α)^n ))+((3(z_1 −α))/(2i(√3)))×(((−1)^(n−1) (n−1)!)/((x−z_1 )^n ))  −((3(z_2 −α))/(2i(√3)))×(((−1)^n (n−1)!)/((x−z_2 )^n )) ⇒  a_n =(1/(n!))f^((n)) (0) =(1/(n!)){(3/2)α^(−n) (−1)^(n−1) (n−1)!+((3(z_1 −α))/(2i(√3)))(−z_1 )^(−n) (−1)^(n−1) (n−1)!  −((3(z_2 −α))/(2i(√3)))(−z_2 )^(−n) (−1)^n (n−1)!}
an=f)n)(0)n!letdeterminef)n)(0)wehavef(x)=3x2x3+2letα=32f(x)=3x2x3+α3=3x2(x+α)(x2αx+α2)=ax+α+bx+cx2αx+α2wehavea=3α23α2=32limx+xf(x)=3=a+bb=332=32f(0)=0=aα+cα2o=αa+cc=α.32f(x)=32(x+α)+32x3α2x2αx+α2=32(x+α)+32xαx2αx+α2letdecomposeinsideC(x)thefractionF(x)=xαx2αx+α2Δ=α24α2=3α2z1=α+iα32=α(12+i32)=αeiπ3z2=αeiπ3F(x)=axz1+bxz2(=xα(xz1)(xz2))a=z1αz1z2=z1α2iα32=1iα3(z1α)b=z2αz2z1=1iα3(z2α)f(x)=32(x+α)+3(z1α)2iα3(xz1)3(z2α)2iα3(xz2)f(n)(x)=32{1x+α}(n1)+3(z1α)2i3{1xz1}(n1)3(z2α)2i3{1xz2}(n1)=32(1)n1(n1)!(x+α)n+3(z1α)2i3×(1)n1(n1)!(xz1)n3(z2α)2i3×(1)n(n1)!(xz2)nan=1n!f(n)(0)=1n!{32αn(1)n1(n1)!+3(z1α)2i3(z1)n(1)n1(n1)!3(z2α)2i3(z2)n(1)n(n1)!}

Leave a Reply

Your email address will not be published. Required fields are marked *