Menu Close

let-f-x-pi-6-pi-4-tant-2-x-cost-dt-with-x-real-1-determine-a-explicit-form-for-f-x-2-determine-also-g-x-pi-6-pi-4-tant-2-xcost-2-dx-3-find-the-value-of-pi-6-pi-4-




Question Number 72888 by mathmax by abdo last updated on 04/Nov/19
let f(x)=∫_(π/6) ^(π/4)   ((tant)/(2+x cost))dt  with x real  1)determine a explicit form for f(x)  2)determine also g(x)=∫_(π/6) ^(π/4)   ((tant)/((2+xcost)^2 ))dx  3) find the value of ∫_(π/6) ^(π/4)   ((tant)/((2+3cost)))dt and ∫_(π/6) ^(π/4)  ((tant)/((2+3cost)^2 ))dt
letf(x)=π6π4tant2+xcostdtwithxreal1)determineaexplicitformforf(x)2)determinealsog(x)=π6π4tant(2+xcost)2dx3)findthevalueofπ6π4tant(2+3cost)dtandπ6π4tant(2+3cost)2dt
Commented by mathmax by abdo last updated on 05/Nov/19
we have f(x)=∫_(π/6) ^(π/4)    ((sint)/(cost(2+xcost)))dt  changent cost =u give  f(x)=∫_((√3)/2) ^((√2)/2)    ((−du)/(u(2+xu))) =−∫_((√3)/3) ^((√2)/2)   (du/(u(xu +2))) let decompose  F(u)=(1/(u(xu+2))) ⇒F(u)=(a/u) +(b/(xu +2))  a =(1/2)  and b =lim_(u→−(2/x))  (xu+2)F(u)=(1/(−(2/x))) =−(x/2) ⇒  F(u)=(1/(2u))−(x/(2(xu+2))) ⇒f(x)=−(1/2)∫_((√3)/2) ^((√2)/2) ((1/u)−(x/(xu+2)))du  =−(1/2)[ln∣(u/(xu+2))∣]_((√3)/2) ^((√2)/2) =−(1/2){ ln∣(((√2)/2)/(x((√2)/2)+2))∣−ln∣(((√3)/2)/(x((√3)/2)+2))∣}  =−(1/2){ln∣((√2)/(4+x(√2)))∣−ln∣((√3)/(4+x(√3)))∣}  =−(1/2){(1/2)ln(2)−ln∣4+x(√2)∣−(1/2)ln(3)+ln∣4+x(√3)∣}  =−(1/4)(ln(2)−ln(3))+(1/2)ln∣((4+x(√2))/(4+x(√3)))∣ ⇒  f(x)=(1/4)ln((3/2))+(1/2)ln∣((4+x(√2))/(4+x(√3)))∣
wehavef(x)=π6π4sintcost(2+xcost)dtchangentcost=ugivef(x)=3222duu(2+xu)=3322duu(xu+2)letdecomposeF(u)=1u(xu+2)F(u)=au+bxu+2a=12andb=limu2x(xu+2)F(u)=12x=x2F(u)=12ux2(xu+2)f(x)=123222(1uxxu+2)du=12[lnuxu+2]3222=12{ln22x22+2ln32x32+2}=12{ln24+x2ln34+x3}=12{12ln(2)ln4+x212ln(3)+ln4+x3}=14(ln(2)ln(3))+12ln4+x24+x3f(x)=14ln(32)+12ln4+x24+x3
Commented by mathmax by abdo last updated on 05/Nov/19
2) we have f^′ (x) =−∫_(π/6) ^(π/4)  ((cost×tant)/((2+xcost)^2 ))dt =−∫_(π/6) ^(π/4)   ((sint)/((2+xcost)^2 ))dt  =−g(x) ⇒g(x)=−f^′ (x)  but   f^′ (x) =(1/2)(((((4+x(√2))/(4+x(√3))))^′ )/((4+x(√2))/(4+x(√3)))) =((4+x(√3))/(2(4+x(√2))))×(((√2)(4+x(√3))−(√3)(4+x(√2)))/((4+x(√3))^2 ))  =(1/(2(4+x(√2))(4+x(√3))))×4((√2)−(√3)) =((2(√2)−2(√3))/((4+x(√2))(4+x(√3)))) ⇒  g(x)=((2(√3)−2(√2))/((4+x(√2))(4+x(√3))))
2)wehavef(x)=π6π4cost×tant(2+xcost)2dt=π6π4sint(2+xcost)2dt=g(x)g(x)=f(x)butf(x)=12(4+x24+x3)4+x24+x3=4+x32(4+x2)×2(4+x3)3(4+x2)(4+x3)2=12(4+x2)(4+x3)×4(23)=2223(4+x2)(4+x3)g(x)=2322(4+x2)(4+x3)
Commented by mathmax by abdo last updated on 05/Nov/19
3)∫_(π/6) ^(π/4)   ((tant)/((2+3cost)))dt =f(3)=(1/4)ln((3/2))+(1/2)ln∣((4+3(√2))/(4+3(√3)))∣
3)π6π4tant(2+3cost)dt=f(3)=14ln(32)+12ln4+324+33
Commented by mathmax by abdo last updated on 05/Nov/19
∫_(π/6) ^(π/4)   ((sint)/((2+3cost)^2 ))dt =g(3)=((2(√3)−2(√2))/((4+3(√2))(4+3(√3))))
π6π4sint(2+3cost)2dt=g(3)=2322(4+32)(4+33)
Commented by mathmax by abdo last updated on 05/Nov/19
sorry g(x)=∫_(π/6) ^(π/4)  ((sint)/((2+xcost)^2 ))dt
sorryg(x)=π6π4sint(2+xcost)2dt
Answered by mind is power last updated on 04/Nov/19
f(x)=∫((sin(t)dt)/(cos(t)(2+xcos(t)) ))  u=cos(t)  f(x)=∫_((√3)/2) ^((√2)/2) ((−du)/(u(2+xu)))=∫_((√2)/2) ^((√3)/2) (du/(2u))−((xdu)/(2(2+xu)))=(1/2)ln(((√3)/( (√2))))−(1/2)ln(((2+((x(√3))/2))/(2+x((√2)/2))))  f′(x)=∫−((tan(t)cos(t))/((2+xcos(t))^2 ))dt  =−∫((tan(t)(cos(t)+(2/x)−(2/x)))/((2+xcos(t))^2 ))=−(1/x)∫((tan(t))/((2+xcos(t))))+(2/x)∫((tan(t))/((2+xcos(t))^2 ))  ⇒((xf′(x))/2)+((f(x))/2)=g(x)  g(x)=(x/2){−((√3)/(4+x(√2)))+((√2)/(4+x(√2)))}+(1/2){ln(((√3)/( (√2))))−(1/2)ln(((4+x(√3))/(4+x(√2))))}  ∫_(π/6) ^(π/4) ((tan(t))/((2+3cos(t))))dt=f(3)=(1/2)ln(((√3)/( (√2))))−(1/2)ln(((4+3(√3))/(4+3(√2))))  ∫_(π/6) ^(π/4) (((tan(t)))/((2+3cos(t))^2 ))dt=g(3)=(3/2)((((√2)−(√3))/(4+3(√2))))+((ln(((√3)/( (√2)))))/2)−(1/4)ln(((4+3(√3))/(4+3(√3))))
f(x)=sin(t)dtcos(t)(2+xcos(t))u=cos(t)f(x)=3222duu(2+xu)=2232du2uxdu2(2+xu)=12ln(32)12ln(2+x322+x22)f(x)=tan(t)cos(t)(2+xcos(t))2dt=tan(t)(cos(t)+2x2x)(2+xcos(t))2=1xtan(t)(2+xcos(t))+2xtan(t)(2+xcos(t))2xf(x)2+f(x)2=g(x)g(x)=x2{34+x2+24+x2}+12{ln(32)12ln(4+x34+x2)}π6π4tan(t)(2+3cos(t))dt=f(3)=12ln(32)12ln(4+334+32)π6π4(tan(t))(2+3cos(t))2dt=g(3)=32(234+32)+ln(32)214ln(4+334+33)
Commented by turbo msup by abdo last updated on 04/Nov/19
thsnk you sir.
thsnkyousir.
Commented by mind is power last updated on 04/Nov/19
y,re welcom
y,rewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *