let-f-x-x-2-3x-arctan-2x-1-1-determine-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-3-calculate-0-1-f-x-dx- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 68238 by mathmax by abdo last updated on 07/Sep/19 letf(x)=(x2−3x)arctan(2x+1)1)determinef(n)(x)andf(n)(0)2)developpfatintegrserie3)calculate∫01f(x)dx Commented by mathmax by abdo last updated on 08/Sep/19 2)f(x)=∑n=0∞f(n)(0)n!xn=f(0)+∑n=1∞f(n)(0)n!xn1)f(x)=(x2−3x)arctan(2x+1)leibnizformulagivef(n)(x)=∑k=0nCnk(x2−3x)(k)(arctan(2x+1))(n−k)=(x2−3x)(arctan(2x+1))(n)+n(2x−3)(arctan(2x+1))(n−1)+n(n−1)(arctan(2x+1))(n−2)letA(x)=arctan(2x+1)⇒A′(x)=21+(2x+1)2=21+4x2+4x+1=24x2+4x+2=12x2+2x+1⇒A(n)(x)=(12x2+2x+1)(n−1)2x2+2x+1=0→Δ′=1−2=−1⇒x1=−1+i2=−1−i2=−22e−iπ4x2=−1−i2=−22eiπ4⇒12x2+2x+1=12(x+22e−iπ4)(x+22eiπ4)=12i{1x+22e−iπ4−1x+22eiπ4}⇒A(n)=12i{(−1)n−1(n−1)!(x+22e−iπ4)n−(−1)n−1(n−1)!(x+22eiπ4)n}=(−1)n−1(n−1)!2i{(x+22eiπ4)n−(x+22e−iπ4)n(x2+x+12)n}=(−1)n−1(n−1)!2i×2iIm((x+22eiπ4)n)(x2+x+12)n⇒A(n)(x)=(−1)n−1(n−1)!Im((x+22eiπ4)n)(x2+x+12)n⇒f(n)(x)=(x2−3x)A(n)(x)+n(2x−3)A(n−1)(x)+n(n−1)A(n−2)(x)⇒f(n)(0)=−3nA(n−1)(0)+n(n−1)A(n−2)(0)A(n)(0)=2n(−1)n−1(n−1)!Im(22eiπ4)n=2n(−1)n−1(n−1)!2n22nsin(nπ4)=2n2(−1)n−1(n−1)!sin(nπ4)⇒f(n)(0)=−3n2n−12(−1)n−2(n−2)!sin((n−1)π4)+n(n−1)2n−22(−1)n−3(n−3)!sin((n−2)π4) Commented by mathmax by abdo last updated on 08/Sep/19 2)f(x)=∑n=0∞f(n)(0)n!xn=f(0)+f(1)(0)1!x+f(2)(0)2!x2+∑n=3∞f(n)(0)n!xn=f′(0)x+f(2)(0)2x2+∑n=3∞(−3n2n−12(−1)\boldsymboln−2(\boldsymboln−2)!sin((n−1)π4)+n(n−1)2n−22(−1)\boldsymboln−3(\boldsymboln−3)!sin((n−2)π4)n!)xn Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: s-i-1-i-s-1-1-2-s-1-3-s-Is-s-gt-0-s-R-1-Can-you-prove-or-prove-otherwise-2-If-s-gt-n-s-R-what-are-the-bounds-of-s-i-e-a-s-b-s-gt-n-Next Next post: Question-133773 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.