Menu Close

let-f-x-x-2-3x-arctan-2x-1-1-determine-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-3-calculate-0-1-f-x-dx-




Question Number 68238 by mathmax by abdo last updated on 07/Sep/19
let  f(x)=(x^2 −3x)arctan(2x+1)  1) determine f^((n)) (x)  and f^((n)) (0)  2)developp f at integr serie  3) calculate ∫_0 ^1 f(x)dx
letf(x)=(x23x)arctan(2x+1)1)determinef(n)(x)andf(n)(0)2)developpfatintegrserie3)calculate01f(x)dx
Commented by mathmax by abdo last updated on 08/Sep/19
2) f(x) =Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n  =f(0) +Σ_(n=1) ^∞  ((f^((n)) (0))/(n!)) x^n   1)f(x)=(x^2 −3x)arctan(2x+1)  leibniz formula give  f^((n)) (x) =Σ_(k=0) ^n  C_n ^k (x^2 −3x)^((k)) (arctan(2x+1))^((n−k))   =(x^2 −3x)(arctan(2x+1))^((n))  +n(2x−3)(arctan(2x+1))^((n−1))   +n(n−1)(arctan(2x+1))^((n−2))  let A(x)=arctan(2x+1) ⇒  A^′ (x) =(2/(1+(2x+1)^2 )) =(2/(1+4x^2  +4x +1)) =(2/(4x^2  +4x +2)) =(1/(2x^2  +2x+1))  ⇒A^((n)) (x)=((1/(2x^2  +2x+1)))^((n−1))   2x^2  +2x+1 =0→Δ^′ =1−2 =−1 ⇒x_1 =((−1+i)/2) =−((1−i)/2)=−((√2)/2)e^(−((iπ)/4))   x_2 =((−1−i)/2) =−((√2)/2)e^((iπ)/4)  ⇒  (1/(2x^2  +2x+1)) =(1/(2(x+((√2)/2)e^(−((iπ)/4)) )(x+((√2)/2)e^((iπ)/4) )))  =(1/(2i)){  (1/(x+((√2)/2)e^(−((iπ)/4)) ))−(1/(x+((√2)/2)e^((iπ)/4) ))} ⇒  A^((n)) =(1/(2i)){ (((−1)^(n−1) (n−1)!)/((x+((√2)/2)e^(−((iπ)/4)) )^n ))−(((−1)^(n−1) (n−1)!)/((x+((√2)/2)e^((iπ)/4) )^n ))}  =(((−1)^(n−1) (n−1)!)/(2i)){(((x+((√2)/2)e^((iπ)/4) )^n −(x+((√2)/2)e^(−((iπ)/4)) )^n )/((x^2  +x+(1/2))^n ))}  =(((−1)^(n−1) (n−1)!)/(2i))×((2i Im((x+((√2)/2)e^((iπ)/4) )^n ))/((x^2  +x+(1/2))^n )) ⇒  A^((n)) (x)=(((−1)^(n−1) (n−1)!Im((x+((√2)/2)e^((iπ)/4) )^n ))/((x^2  +x+(1/2))^n )) ⇒  f^((n)) (x) =(x^2 −3x)A^((n)) (x)+n(2x−3) A^((n−1)) (x)+n(n−1)A^((n−2)) (x)  ⇒f^((n)) (0) =−3n A^((n−1)) (0)+n(n−1) A^((n−2)) (0)  A^((n)) (0) =2^n (−1)^(n−1) (n−1)!Im(((√2)/2)e^((iπ)/4) )^n   =2^n (−1)^(n−1) (n−1)!(2^(n/2) /2^n )sin(n(π/4)) =2^(n/2) (−1)^(n−1) (n−1)!sin(((nπ)/4)) ⇒  f^((n)) (0) =−3n 2^((n−1)/2) (−1)^(n−2) (n−2)!sin((((n−1)π)/4))  +n(n−1)2^((n−2)/2) (−1)^(n−3) (n−3)!sin((((n−2)π)/4))
2)f(x)=n=0f(n)(0)n!xn=f(0)+n=1f(n)(0)n!xn1)f(x)=(x23x)arctan(2x+1)leibnizformulagivef(n)(x)=k=0nCnk(x23x)(k)(arctan(2x+1))(nk)=(x23x)(arctan(2x+1))(n)+n(2x3)(arctan(2x+1))(n1)+n(n1)(arctan(2x+1))(n2)letA(x)=arctan(2x+1)A(x)=21+(2x+1)2=21+4x2+4x+1=24x2+4x+2=12x2+2x+1A(n)(x)=(12x2+2x+1)(n1)2x2+2x+1=0Δ=12=1x1=1+i2=1i2=22eiπ4x2=1i2=22eiπ412x2+2x+1=12(x+22eiπ4)(x+22eiπ4)=12i{1x+22eiπ41x+22eiπ4}A(n)=12i{(1)n1(n1)!(x+22eiπ4)n(1)n1(n1)!(x+22eiπ4)n}=(1)n1(n1)!2i{(x+22eiπ4)n(x+22eiπ4)n(x2+x+12)n}=(1)n1(n1)!2i×2iIm((x+22eiπ4)n)(x2+x+12)nA(n)(x)=(1)n1(n1)!Im((x+22eiπ4)n)(x2+x+12)nf(n)(x)=(x23x)A(n)(x)+n(2x3)A(n1)(x)+n(n1)A(n2)(x)f(n)(0)=3nA(n1)(0)+n(n1)A(n2)(0)A(n)(0)=2n(1)n1(n1)!Im(22eiπ4)n=2n(1)n1(n1)!2n22nsin(nπ4)=2n2(1)n1(n1)!sin(nπ4)f(n)(0)=3n2n12(1)n2(n2)!sin((n1)π4)+n(n1)2n22(1)n3(n3)!sin((n2)π4)
Commented by mathmax by abdo last updated on 08/Sep/19
2) f(x) =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n   =f(0)+((f^((1)) (0))/(1!)) x +((f^((2)) (0))/(2!)) x^2  +Σ_(n=3) ^∞   ((f^((n)) (0))/(n!)) x^n   =f^′ (0)x +((f^((2)) (0))/2)x^2    +Σ_(n=3) ^∞   (((−3n2^((n−1)/2) (−1)^(n−2) (n−2)!sin((((n−1)π)/4))+n(n−1)2^((n−2)/2) (−1)^(n−3) (n−3)!sin((((n−2)π)/4)))/(n!)) )x^n
2)f(x)=n=0f(n)(0)n!xn=f(0)+f(1)(0)1!x+f(2)(0)2!x2+n=3f(n)(0)n!xn=f(0)x+f(2)(0)2x2+n=3(3n2n12(1)\boldsymboln2(\boldsymboln2)!sin((n1)π4)+n(n1)2n22(1)\boldsymboln3(\boldsymboln3)!sin((n2)π4)n!)xn

Leave a Reply

Your email address will not be published. Required fields are marked *