Menu Close

let-f-x-x-2n-e-3x-find-f-n-o-and-calculate-f-2021-0-




Question Number 140637 by Mathspace last updated on 10/May/21
let f(x)=x^(2n)  e^(−3x)   find  f^((n)) (o) and  calculate f^((2021)) (0)
letf(x)=x2ne3xfindf(n)(o)andcalculatef(2021)(0)
Answered by mathmax by abdo last updated on 12/May/21
 by leibniz  f^((p)) (x)=Σ_(k=0) ^p  C_p ^k  (x^(2n) )^((k)) (e^(−3x) )^((p−k))   (x^(2n) )^((1))  =2n x^(2n−1)  ,(x^(2n) )^((2))  =2n(2n−1)x^(2n−2)  ....  (x^(2n) )^((k))  =2n(2n−1)....(2n−k+1)x^(2n−k)  ⇒  f^((p)) (x)=Σ_(k=0) ^p  C_p ^k  2n(2n−1)2n−2)....(2n−k+1)x^(2n−k)  (−3)^(p−k)  e^(−3x)   ⇒f^((n)) (x)=Σ_(k=0) ^n  C_n ^k  2n(2n−1)....(2n−k+1)x^(2n−k) (−3)^(n−k)  e^(−3x)  ⇒  f^((n)) (0)=0 ⇒f^((2021)) (0)=0
byleibnizf(p)(x)=k=0pCpk(x2n)(k)(e3x)(pk)(x2n)(1)=2nx2n1,(x2n)(2)=2n(2n1)x2n2.(x2n)(k)=2n(2n1).(2nk+1)x2nkf(p)(x)=k=0pCpk2n(2n1)2n2).(2nk+1)x2nk(3)pke3xf(n)(x)=k=0nCnk2n(2n1).(2nk+1)x2nk(3)nke3xf(n)(0)=0f(2021)(0)=0

Leave a Reply

Your email address will not be published. Required fields are marked *