Question Number 67378 by mathmax by abdo last updated on 26/Aug/19
$${let}\:{f}\left({x}\right)\:={x}^{\mathrm{3}} \:\:\:\:\:\:,\mathrm{2}\pi\:{periodic}\:{odd} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\: \\ $$
Commented by mathmax by abdo last updated on 30/Aug/19
$$\left.{f}\left.\left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{a}_{{n}} {sin}\left({nx}\right)\:{with}\:{a}_{{n}} =\frac{\mathrm{2}}{{T}}\int_{\left[{T}\right]} \:\:{x}^{\mathrm{3}} {sin}\right){nx}\right){dx} \\ $$$$=\frac{\mathrm{2}}{\mathrm{2}\pi}\:\int_{−\pi} ^{\pi} \:{x}^{\mathrm{3}} \:{sin}\left({nx}\right){dx}\:=\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:{x}^{\mathrm{3}} \:{sin}\left({nx}\right){dx}\:\Rightarrow \\ $$$$\frac{\pi}{\mathrm{2}}{a}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:{x}^{\mathrm{3}} \:{sin}\left({nx}\right){dx}\:=_{{nx}={t}} \:\:\:\int_{\mathrm{0}} ^{{n}\pi} \frac{{t}^{\mathrm{3}} }{{n}^{\mathrm{3}} }{sin}\left({t}\right)\frac{{dt}}{{n}} \\ $$$$=\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\:\int_{\mathrm{0}} ^{{n}\pi} \:{t}^{\mathrm{3}} \:{sint}\:{dt}\:\:\:{by}\:{parts}\:\:\int_{\mathrm{0}} ^{{n}\pi} \:{t}^{\mathrm{3}} \:{sint}\:{dt}=\left[−{t}^{\mathrm{3}} {cost}\right]_{\mathrm{0}} ^{{n}\pi} \\ $$$$+\int_{\mathrm{0}} ^{{n}\pi} \mathrm{3}{t}^{\mathrm{2}} {cost}\:{dt}\:=−{n}^{\mathrm{3}} \pi^{\mathrm{3}} \left(−\mathrm{1}\right)^{{n}} \:+\mathrm{3}\:\int_{\mathrm{0}} ^{{n}\pi} \:{t}^{\mathrm{2}} \:{cost}\:{dt} \\ $$$${by}\:{parts}\:{again}\:\:\:\int_{\mathrm{0}} ^{\pi} \:{t}^{\mathrm{2}} {cost}\:{dt}\:=\left[{t}^{\mathrm{2}} {sint}\right]_{\mathrm{0}} ^{{n}\pi} \:−\int_{\mathrm{0}} ^{{n}\pi} \mathrm{2}{t}\:{sint} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{{n}\pi} \:{t}\:\left(−{sint}\right){dt}\:=\left[{t}\:{cost}\right]_{\mathrm{0}} ^{{n}\pi} −\int_{\mathrm{0}} ^{{n}\pi} \:{cost}\:{dt} \\ $$$$={n}\pi\left(−\mathrm{1}\right)^{{n}} −\mathrm{0}\:\Rightarrow\frac{\pi}{\mathrm{2}}{a}_{{n}} =\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\left\{−{n}^{\mathrm{3}} \pi^{\mathrm{3}} \left(−\mathrm{1}\right)^{{n}} \:+\mathrm{3}{n}\pi\left(−\mathrm{1}\right)^{{n}} \right\}\:\Rightarrow \\ $$$${a}_{{n}} =\frac{\mathrm{2}}{\pi{n}^{\mathrm{4}} }\left\{−\pi^{\mathrm{3}} {n}^{\mathrm{3}} \left(−\mathrm{1}\right)^{{n}} +\mathrm{3}\pi{n}\left(−\mathrm{1}\right)^{{n}} \right\}\:=−\frac{\mathrm{2}\pi^{\mathrm{2}} }{{n}}\left(−\mathrm{1}\right)^{{n}} \:+\frac{\mathrm{6}}{{n}^{\mathrm{3}} }\left(−\mathrm{1}\right)^{{n}} \:\Rightarrow \\ $$$${x}^{\mathrm{3}} \:=−\mathrm{2}\pi^{\mathrm{2}} \sum_{{n}=\mathrm{1}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}{sin}\left({nx}\right)\:+\mathrm{6}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{3}} }{sin}\left({nx}\right) \\ $$$$ \\ $$