Menu Close

let-F-x-x-x-2-1-e-2t-sin-xt-dt-determine-F-x-and-calculate-lim-x-0-F-x-




Question Number 68019 by mathmax by abdo last updated on 03/Sep/19
let F(x) =∫_x ^(x^2 +1) e^(−2t) sin(xt)dt  determine F^′ (x) and calculate lim_(x→0)  F(x).
letF(x)=xx2+1e2tsin(xt)dtdetermineF(x)andcalculatelimx0F(x).
Commented by kaivan.ahmadi last updated on 05/Sep/19
thank you sir abdo
thankyousirabdo
Commented by mathmax by abdo last updated on 05/Sep/19
sir ahmadi your answer is not correct  because the function   under integral contain 2 varibles x and t ...!
sirahmadiyouranswerisnotcorrectbecausethefunctionunderintegralcontain2variblesxandt!
Commented by mathmax by abdo last updated on 05/Sep/19
F(x) =∫_x ^(x^2  +1)  e^(−2t)  sin(xt)dt  we have u(x)=x and v(x)=x^2  +1and  g(x,t) =e^(−2t) sin(xt)  we use the formulae   F^, (x) =∫_(u(x)) ^(v(x))  (∂g/∂x)(x,t)dt +v^′ g(x,v)−u^′ g(x,u)  =∫_x ^(x^2  +1)   t e^(−2t)  cos(xt)dt +2x g(x,x^2  +1)−g(x,x^2 )  =∫_x ^(x^2  +1)  t e^(−2t)  cos(xt)dt +2xe^(−2(x^2 +1))  sin(x(x^2  +1))−e^(−2x^2 ) sin(x^3 )  we have ∫_x ^(x^2  +1 )  t e^(−2t)  cos(xt)dt =Re(∫_x ^(x^2 +1)  t e^(−2t+ixt)  dt)  ∫_x ^(x^2  +1)  t e^((−2+ix)t)  dt =[(t/(−2+ix)) e^((−2+ix)t) ]_(t=x) ^(t=x^2  +1) −∫_x ^(x^2  +1) (1/(−2+ix))e^((−2+ix)t) dt  =(1/(−2+ix)){(x^2  +1)e^((−2+ix)(x^2 +1)) −xe^((−2+ix)x) }  −(1/(−2+ix)) ∫_x ^(x^2 +1)  e^((−2+ix)t) dt ....rest to finich the calculus.
F(x)=xx2+1e2tsin(xt)dtwehaveu(x)=xandv(x)=x2+1andg(x,t)=e2tsin(xt)weusetheformulaeF,(x)=u(x)v(x)gx(x,t)dt+vg(x,v)ug(x,u)=xx2+1te2tcos(xt)dt+2xg(x,x2+1)g(x,x2)=xx2+1te2tcos(xt)dt+2xe2(x2+1)sin(x(x2+1))e2x2sin(x3)wehavexx2+1te2tcos(xt)dt=Re(xx2+1te2t+ixtdt)xx2+1te(2+ix)tdt=[t2+ixe(2+ix)t]t=xt=x2+1xx2+112+ixe(2+ix)tdt=12+ix{(x2+1)e(2+ix)(x2+1)xe(2+ix)x}12+ixxx2+1e(2+ix)tdt.resttofinichthecalculus.
Commented by mathmax by abdo last updated on 06/Sep/19
you are welcome sir.
youarewelcomesir.
Commented by mathmax by abdo last updated on 08/Sep/19
we have F(x)=∫_x ^(x^2 +1)  e^(−2t)  sin(xt)dt ⇒F(x)=Im(∫_x ^(x^2 +1)  e^(−2t+ixt) dt)  ∫_x ^(x^2 +1)  e^((−2+ix)t) dt =[(1/(−2+ix)) e^((−2+ix)t) ]_x ^(x^2  +1)   =((−1)/(2−ix)){  e^((−2+ix)(x^2 +1)) −e^((−2+ix)x) }  =((−1)/(2−ix)){ e^(−2(x^2  +1))  e^(i(x^3  +x))  −e^(−2x)  e^(ix^2 ) }  =((−1)/(2−ix)){ e^(−2x^2 −2) (cos(x^3 +x)+isin(x^3 +x)−e^(−2x) (cos(x^2 )+isin(x^2 )}  =−((2+ix)/(4+x^2 )){  e^(−2x^2 −2) cos(x^3  +x)−e^(−2x) cos(x^2 )  +i( e^(−2x^2 −2)  sin(x^3  +x)−e^(−2x) sin(x^2 )}  =−(1/(4+x^2 ))(2+ix){......}  =−(1/(4+x^2 )){  2( e^(−2x^2 −2)  cos(x^3  +x)−e^(−2x) cos(x^2 ))  +2i(e^(−2x^2 −2)  sin(x^3  +x)−e^(−2x) sin(x^2 )) +ix( e^(−2x^2 −2) cos(x^3  +x)  −e^(−2x)  cos(x^2 )−x(e^(−2x^2 −2) sin(x^3  +x)−e^(−2x) sin(x^2 )} ⇒  F(x) =−(1/(4+x^2 )){  2(e^(−2x^2 −2) sin(x^3 +x)−e^(−2x) sin(x^2 ))  +x(e^(−2x^2 −2)  cos(x^3 +x)−e^(−2x) cos(x^2 )} ⇒lim_(x→0) F(x) =0
wehaveF(x)=xx2+1e2tsin(xt)dtF(x)=Im(xx2+1e2t+ixtdt)xx2+1e(2+ix)tdt=[12+ixe(2+ix)t]xx2+1=12ix{e(2+ix)(x2+1)e(2+ix)x}=12ix{e2(x2+1)ei(x3+x)e2xeix2}=12ix{e2x22(cos(x3+x)+isin(x3+x)e2x(cos(x2)+isin(x2)}=2+ix4+x2{e2x22cos(x3+x)e2xcos(x2)+i(e2x22sin(x3+x)e2xsin(x2)}=14+x2(2+ix){}=14+x2{2(e2x22cos(x3+x)e2xcos(x2))+2i(e2x22sin(x3+x)e2xsin(x2))+ix(e2x22cos(x3+x)e2xcos(x2)x(e2x22sin(x3+x)e2xsin(x2)}F(x)=14+x2{2(e2x22sin(x3+x)e2xsin(x2))+x(e2x22cos(x3+x)e2xcos(x2)}limx0F(x)=0

Leave a Reply

Your email address will not be published. Required fields are marked *