Menu Close

let-f-x-x-x-2-3-e-xt-ln-1-e-xt-dt-with-x-gt-0-1-calculate-f-x-2-find-lim-x-f-x-




Question Number 74017 by mathmax by abdo last updated on 17/Nov/19
let f(x)=∫_x ^(x^2 +3)  e^(−xt)  ln(1+e^(−xt) )dt    with x>0  1) calculate f(x)  2)find  lim_(x→+∞) f(x).
letf(x)=xx2+3extln(1+ext)dtwithx>01)calculatef(x)2)findlimx+f(x).
Commented by mathmax by abdo last updated on 17/Nov/19
1) calculate f^′ (x)
1)calculatef(x)
Commented by mind is power last updated on 17/Nov/19
u=xt⇒du=xdt  f(x)=(1/x)∫_x^2  ^(x^3 +3x) e^(−u) ln(1+e^(−u) )du  ∫e^(−u) ln(1+e^(−u) )du  =−e^(−u) ln(1+e^(−u) )−∫(e^(−2u) /(1+e^(−u) ))du  =−e^(−u) ln(1+e^(−u) )−∫(((e^(−u) +1)(e^(−u) −1))/((1+e^(−u) )))−∫(e^u /(e^u +1))du  =−e^(−u) ln(1+e^(−u) )+∫(−e^(−u) +1)du−ln(e^u +1)  =−e^(−u) ln(1+e^(−u) )+e^(−u) +u−ln(e^u +1)+c  f(x)=(1/x){[−e^(−(x^3 +3x)) ln(1+e^(−x^3 −3x) )+e^(−(x^3 +3x)) +(x^3 +3x)−ln(e^(x^3 +3x) +1)]  +e^(−x^2 ) ln(1+e^(−x^2 ) )−e^(−x^2 ) −x^2 +ln(e^x^2  +1))]  lim f(x)=0
u=xtdu=xdtf(x)=1xx2x3+3xeuln(1+eu)dueuln(1+eu)du=euln(1+eu)e2u1+eudu=euln(1+eu)(eu+1)(eu1)(1+eu)eueu+1du=euln(1+eu)+(eu+1)duln(eu+1)=euln(1+eu)+eu+uln(eu+1)+cf(x)=1x{[e(x3+3x)ln(1+ex33x)+e(x3+3x)+(x3+3x)ln(ex3+3x+1)]+ex2ln(1+ex2)ex2x2+ln(ex2+1))]limf(x)=0
Commented by mathmax by abdo last updated on 21/Nov/19
1) we have f(x)=∫_x ^(x^2 +3)  e^(−xt) ln(1+e^(−xt) )dt   (x>0) changement  xt=u give f(x)=(1/x)∫_x^2  ^(x^3 +3x)  e^(−u) ln(1+e^(−u) )du ⇒  xf(x)=∫_x^2  ^(x^3 +3x)  e^(−u) ln(1+e^(−u) )dy =_(bypsrts)   [−e^(−u) ln(1+e^(−u) )]_x^2  ^(x^3 +3x)   −∫_x^2  ^(x^3 +3x)  (−e^(−u) )×((−e^(−u) )/(1+e^(−u) )) du =e^(−x^2 ) ln(1+e^(−x^2 ) )  −e^(−(x^3 +3x)) ln(1+e^(−(x^3 +3x)) )   +∫_x^2  ^(x^3 +3x)   (e^(−2u) /(1+e^(−u) ))du  we have  ∫_x^2  ^(x^3 +3x)   (e^(−2u) /(1+e^(−u) ))du =∫_x^2  ^(x^3 +3x)   (1/(e^(2u)  +e^u ))du =_(e^u =z)    ∫_e^x^2   ^e^(x^3  +3x)   (1/(z^2 +z))(dz/z)  = ∫_e^x^2   ^e^(x^3 +3x)     (dz/(z^2 (z+1)))  decomposition of F(z)=(1/(z^2 (z+1)))  F(z)=(a/z) +(b/z^2 ) +(c/(z+1))  b=1    ,  c=1 ⇒F(z)=(a/z) +(1/z^2 ) +(1/(z+1))  lim_(z→+∞) zF(z)=0=a+c  ⇒a=−c=−1 ⇒F(z)=−(1/z)+(1/z^2 ) +(1/(z+1))  ∫_e^x^2   ^e^(x^3 +3x)      (dz/(z^2 (z+1))) =[ln∣((z+1)/z)∣]_e^x^2   ^e^(x^3 +3x)   +[−(1/z)]_e^x^2   ^e^(x^3 +3x)    =ln(((1+e^(x^3 +3x) )/e^(x^3 +3x) ))−ln(((1+e^x^2  )/e^x^2  ))+(e^(−x^2 ) −e^(−(x^3 +3x)) ) ⇒  f(x)=(1/x){e^(−x^2 ) ln(1+e^(−x^2 ) )−e^(−(x^3 +3x)) ln(1+e^(−(x^3 +3x)) )  ln(((1+e^(x^3 +3x) )/e^(x^3 +3x) ))−ln(((1+e^x^2  )/e^x^2  )) +e^(−x^2 ) −e^(−(x^3 +3x)) }  2) lim_(x→+∞)     f(x)=0
1)wehavef(x)=xx2+3extln(1+ext)dt(x>0)changementxt=ugivef(x)=1xx2x3+3xeuln(1+eu)duxf(x)=x2x3+3xeuln(1+eu)dy=bypsrts[euln(1+eu)]x2x3+3xx2x3+3x(eu)×eu1+eudu=ex2ln(1+ex2)e(x3+3x)ln(1+e(x3+3x))+x2x3+3xe2u1+euduwehavex2x3+3xe2u1+eudu=x2x3+3x1e2u+eudu=eu=zex2ex3+3x1z2+zdzz=ex2ex3+3xdzz2(z+1)decompositionofF(z)=1z2(z+1)F(z)=az+bz2+cz+1b=1,c=1F(z)=az+1z2+1z+1limz+zF(z)=0=a+ca=c=1F(z)=1z+1z2+1z+1ex2ex3+3xdzz2(z+1)=[lnz+1z]ex2ex3+3x+[1z]ex2ex3+3x=ln(1+ex3+3xex3+3x)ln(1+ex2ex2)+(ex2e(x3+3x))f(x)=1x{ex2ln(1+ex2)e(x3+3x)ln(1+e(x3+3x))ln(1+ex3+3xex3+3x)ln(1+ex2ex2)+ex2e(x3+3x)}2)limx+f(x)=0

Leave a Reply

Your email address will not be published. Required fields are marked *