Menu Close

let-F-x-x-x-2-arctan-xt-x-2-t-2-dt-calculate-F-x-




Question Number 67974 by mathmax by abdo last updated on 02/Sep/19
let F(x) =∫_x ^x^2     ((arctan(xt))/(x^2  +t^2 ))dt  calculate F^′ (x).
letF(x)=xx2arctan(xt)x2+t2dtcalculateF(x).
Commented by mathmax by abdo last updated on 03/Sep/19
we have g(x,t) =((arctan(xt))/(x^2  +t^2 )) ,u(x) =x  and v(x)=x^2    we use the formulae  F^′ (x) =∫_(u(x)) ^(v(x))  (∂g/∂x)(x,t)dt +v^′ g(x,v)  −u^′ g(x,u)  =∫_x ^x^2  (∂g/∂x)(x,t)dt +2x ×((arctan(x^3 ))/(x^2  +x^4 ))  −((arctan(x^2 ))/(2x^2 ))  (∂g/∂x)(x,t) = (((t/(1+x^2 t^2 ))(x^2  +t^2 )−2x arctan(xt))/((x^2  +t^2 )^2 ))
wehaveg(x,t)=arctan(xt)x2+t2,u(x)=xandv(x)=x2weusetheformulaeF(x)=u(x)v(x)gx(x,t)dt+vg(x,v)ug(x,u)=xx2gx(x,t)dt+2x×arctan(x3)x2+x4arctan(x2)2x2gx(x,t)=t1+x2t2(x2+t2)2xarctan(xt)(x2+t2)2
Commented by mathmax by abdo last updated on 03/Sep/19
⇒ F^′ (x) =∫_x ^x^2  (  (t/((1+x^2 t^2 )(x^(2 ) +t^2 ))) −((2x arctan(xt))/((x^2  +t^2 )^2 )))dt  +((2xarctan(x^3 ))/(x^2  +x^4 )) −((arctan(x^2 ))/(2x^2 )) ....be continued...
F(x)=xx2(t(1+x2t2)(x2+t2)2xarctan(xt)(x2+t2)2)dt+2xarctan(x3)x2+x4arctan(x2)2x2.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *