Question Number 67974 by mathmax by abdo last updated on 02/Sep/19
$${let}\:{F}\left({x}\right)\:=\int_{{x}} ^{{x}^{\mathrm{2}} } \:\:\:\frac{{arctan}\left({xt}\right)}{{x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }{dt}\:\:{calculate}\:{F}\:^{'} \left({x}\right). \\ $$
Commented by mathmax by abdo last updated on 03/Sep/19
$${we}\:{have}\:{g}\left({x},{t}\right)\:=\frac{{arctan}\left({xt}\right)}{{x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }\:,{u}\left({x}\right)\:={x}\:\:{and}\:{v}\left({x}\right)={x}^{\mathrm{2}} \: \\ $$$${we}\:{use}\:{the}\:{formulae}\:\:{F}\:^{'} \left({x}\right)\:=\int_{{u}\left({x}\right)} ^{{v}\left({x}\right)} \:\frac{\partial{g}}{\partial{x}}\left({x},{t}\right){dt}\:+{v}^{'} {g}\left({x},{v}\right) \\ $$$$−{u}^{'} {g}\left({x},{u}\right)\:\:=\int_{{x}} ^{{x}^{\mathrm{2}} } \frac{\partial{g}}{\partial{x}}\left({x},{t}\right){dt}\:+\mathrm{2}{x}\:×\frac{{arctan}\left({x}^{\mathrm{3}} \right)}{{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} } \\ $$$$−\frac{{arctan}\left({x}^{\mathrm{2}} \right)}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$\frac{\partial{g}}{\partial{x}}\left({x},{t}\right)\:=\:\frac{\frac{{t}}{\mathrm{1}+{x}^{\mathrm{2}} {t}^{\mathrm{2}} }\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)−\mathrm{2}{x}\:{arctan}\left({xt}\right)}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 03/Sep/19
$$\Rightarrow\:{F}\:^{'} \left({x}\right)\:=\int_{{x}} ^{{x}^{\mathrm{2}} } \left(\:\:\frac{{t}}{\left(\mathrm{1}+{x}^{\mathrm{2}} {t}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}\:} +{t}^{\mathrm{2}} \right)}\:−\frac{\mathrm{2}{x}\:{arctan}\left({xt}\right)}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\right){dt} \\ $$$$+\frac{\mathrm{2}{xarctan}\left({x}^{\mathrm{3}} \right)}{{x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} }\:−\frac{{arctan}\left({x}^{\mathrm{2}} \right)}{\mathrm{2}{x}^{\mathrm{2}} }\:….{be}\:{continued}… \\ $$