Menu Close

let-f-x-x-x-2-x-arctan-e-x-t-dt-calculate-f-x-and-f-0-




Question Number 68466 by mathmax by abdo last updated on 11/Sep/19
let f(x) =∫_x^  ^(x^2 −x)  arctan(e^(−x−t) )dt  calculate f^′ (x)   and f^′ (0).
letf(x)=xx2xarctan(ext)dtcalculatef(x)andf(0).
Commented by mathmax by abdo last updated on 11/Sep/19
we have g(x,t)=arctan(e^(−x−t) )   ,u(x)=x and v(x)=x^2 −x ⇒  f^′ (x) =∫_(u(x)) ^(v(x)) (∂g/∂x)(x,t)dt +v^′ g(x,v)−u^′ g(x,u)  =∫_x ^(x^2 −x)   ((−e^(−x−t) )/(1+e^(−2x−2t) ))dt  +(2x−1)g(x,x^2 −x)−g(x,x)  =−e^(−x)  ∫_x ^(x^2 −x)   (e^(−t) /(1+e^(−2t−2x) ))dt  +(2x−1)arctan(e^(−x^2 ) )  −arctan(e^(−2x) )  let find I =∫_x ^(x^2 −x)  (e^(−t) /(1+e^(−2t−2x) ))dt ⇒  I =∫_x ^(x^2 −1)   (e^t /(e^(2t) +e^(−2x) )) dt   =_(e^t =u)      ∫_e^x  ^e^(x^2 −x)      (u/(u^2  +e^(−2x) )) (du/u)  =∫_e^x  ^e^(x^2 −x)    (du/(u^2  +e^(−2x) )) =_(u=e^(−x)  z)     ∫_e^(2x)  ^e^x^2       ((e^(−x) dz)/(e^(−2x) (z^2 +1))) =e^x [arctanz]_e^(2x)  ^e^x^2     =e^x { arctan(e^x^2  )−arctan(e^(2x) )} ⇒  f^′ (x) =−arctan(e^x^2  )+e^(−x)  arctan(e^(2x) )+(2x−1)arctan(e^(−x^2 ) )  −arctan(e^(−2x) ) .
wehaveg(x,t)=arctan(ext),u(x)=xandv(x)=x2xf(x)=u(x)v(x)gx(x,t)dt+vg(x,v)ug(x,u)=xx2xext1+e2x2tdt+(2x1)g(x,x2x)g(x,x)=exxx2xet1+e2t2xdt+(2x1)arctan(ex2)arctan(e2x)letfindI=xx2xet1+e2t2xdtI=xx21ete2t+e2xdt=et=uexex2xuu2+e2xduu=exex2xduu2+e2x=u=exze2xex2exdze2x(z2+1)=ex[arctanz]e2xex2=ex{arctan(ex2)arctan(e2x)}f(x)=arctan(ex2)+exarctan(e2x)+(2x1)arctan(ex2)arctan(e2x).
Commented by mathmax by abdo last updated on 11/Sep/19
f^′ (0) =−(π/4)+(π/4)−(π/4)−(π/4) ⇒f^′ (0) =−(π/2)
f(0)=π4+π4π4π4f(0)=π2
Answered by meme last updated on 11/Sep/19
f^′ (x)=arctan(e^(−x−x^2 +x) )−arctan(e^(−x−x) )             = arctan(e^(−x^2 ) )−arctan(e^(−2x) )      f^′ (0)=arctan(1)−arctan(1)                 = 0
f(x)=arctan(exx2+x)arctan(exx)=arctan(ex2)arctan(e2x)f(0)=arctan(1)arctan(1)=0
Commented by turbo msup by abdo last updated on 11/Sep/19
your answer is not correct sir.
youranswerisnotcorrectsir.

Leave a Reply

Your email address will not be published. Required fields are marked *