Question Number 68466 by mathmax by abdo last updated on 11/Sep/19

Commented by mathmax by abdo last updated on 11/Sep/19
![we have g(x,t)=arctan(e^(−x−t) ) ,u(x)=x and v(x)=x^2 −x ⇒ f^′ (x) =∫_(u(x)) ^(v(x)) (∂g/∂x)(x,t)dt +v^′ g(x,v)−u^′ g(x,u) =∫_x ^(x^2 −x) ((−e^(−x−t) )/(1+e^(−2x−2t) ))dt +(2x−1)g(x,x^2 −x)−g(x,x) =−e^(−x) ∫_x ^(x^2 −x) (e^(−t) /(1+e^(−2t−2x) ))dt +(2x−1)arctan(e^(−x^2 ) ) −arctan(e^(−2x) ) let find I =∫_x ^(x^2 −x) (e^(−t) /(1+e^(−2t−2x) ))dt ⇒ I =∫_x ^(x^2 −1) (e^t /(e^(2t) +e^(−2x) )) dt =_(e^t =u) ∫_e^x ^e^(x^2 −x) (u/(u^2 +e^(−2x) )) (du/u) =∫_e^x ^e^(x^2 −x) (du/(u^2 +e^(−2x) )) =_(u=e^(−x) z) ∫_e^(2x) ^e^x^2 ((e^(−x) dz)/(e^(−2x) (z^2 +1))) =e^x [arctanz]_e^(2x) ^e^x^2 =e^x { arctan(e^x^2 )−arctan(e^(2x) )} ⇒ f^′ (x) =−arctan(e^x^2 )+e^(−x) arctan(e^(2x) )+(2x−1)arctan(e^(−x^2 ) ) −arctan(e^(−2x) ) .](https://www.tinkutara.com/question/Q68478.png)
Commented by mathmax by abdo last updated on 11/Sep/19

Answered by meme last updated on 11/Sep/19

Commented by turbo msup by abdo last updated on 11/Sep/19
