Let-go-toward-a-rational-order-of-derivation-Part-1-What-s-that-special-factor-Let-n-p-and-k-three-integer-different-of-zero-We-state-J-n-k-p-0-1-1-x-n-p-k-n-dx-and-C-n- Tinku Tara June 3, 2023 Integration FacebookTweetPin Question Number 65828 by ~ À ® @ 237 ~ last updated on 04/Aug/19 LetgotowardarationalorderofderivationPart1:What′sthatspecialfactorLetn,pandkthreeintegerdifferentofzeroWestateJn,k(p)=∫01(1−xn)p+kndxandCn(p)=∏n−1k=0Jn,k(p)1)a)CalculateC1(p)b)ProvethatJn,k(p)=1nB(1n,p+1+kn)andexplicitCn(p)intermsofnandp2)Deducethat∀n>0thereexistarealansuchas(nan)nCn(p)=1p+13)Studytheconvergenceoftheresultsuite(an)n.Thenshowthatlimn−>∞nan=1Part2:therationalorderofderivationLetf∈C1(R,R).WeconsiderI1n(f)afunctiondefinedonR+byI1n(f)(x)=an∫0xf(t)(x−t)1−1ndtandD1n(f)=(I1n(f))(1)1)a_ProvethatI1n(f)(x)=nanx1n∫01f(x(1−vn))dvthenfindD12(t)b)Showthat∀f∈C1(R,R)∀x∈R+D1n(f)(x)=I1n(f)(x)+f(0)(πx)1−1n2)∀pintegerandk∈{0,…,n−1}explicitI1n(tp+kn)intermofIn,k(p)b)Provethatforpolynomialfunctionfthen−thcompositionI1n.….I1n(f)(x)=∫0xf(t)dt,c)Deducethat∀fpolynomialthefunctiong=f−f(0)verifyD1n……D1n(g)(x)=g(x)3)Widenthattwoformulastoallfunctionthatcanbedeveloppintointegerserie4)TrytofindtherelationbetweenD1n.I1n(f),I1n.D1n(f),andf4)Showthat∀x∈R+limn−>∞I1n(f)(x)=∫0xf(t)dtpourg=f−f(0)limn−>∞D1n(g)(x)=g(x)conclusionthederivativeofthefunctionIα(f)definedonR+byIα(f)(x)=an∫0xf(t)(x−t)1n−1dtiscalledthederivativeoforderα Commented by ~ À ® @ 237 ~ last updated on 04/Aug/19 Iα(f)(x)=an∫0xf(t)(x−t)α−1dt Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: a-n-m-m-n-0-a-n-1-m-2-n-gt-0-n-0-mod-2-a-n-2-m-1-nn-n-gt-0-n-1-mod-2-m-0-a-m-1-n-1-a-n-2-m-2-n-gt-0-n-1-mod-2-m-gt-0-evaluate-a-7-5-Next Next post: If-V-log-x-2-y-2-then-V-xx-V-yy-