let-I-0-1-x-ln-1-x-dx-determine-a-approximate-value-of-I- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 68879 by mathmax by abdo last updated on 16/Sep/19 letI=∫01xln(1+x)dxdetermineaapproximatevalueofI Commented by Abdo msup. last updated on 21/Sep/19 thereaerrorofcalculusintheansweriwillhidthispost… Commented by mathmax by abdo last updated on 22/Sep/19 wehaveln′(1+x)=11+x=∑n=0∞(−1)nxn⇒ln(1+x)=∑n=0∞(−1)nxn+1n+1+c(c=0)⇒ln(1+x)=x−x22+x33−…⇒x−x22⩽ln(1+x)⩽x⇒1x⩽1ln(1+x)⩽1x−x22⇒1⩽xln(1+x)⩽11−x2⇒1⩽∫01xln(1+x)dx⩽∫01dx1−x2wehave∫01dx1−x2=∫012dx2−x=−2∫01dxx−2=−2[ln∣x−2∣]01=−2(−ln2)=2ln(2)⇒1⩽I⩽2ln(2)sov0=1+2ln(2)2isaapproximatevalueofI. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-xdx-x-2-x-i-2-with-i-2-1-Next Next post: find-2-x-1-x-2-1-x-2-1-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.