Menu Close

let-I-0-1-x-ln-1-x-dx-determine-a-approximate-value-of-I-




Question Number 68879 by mathmax by abdo last updated on 16/Sep/19
let I =∫_0 ^1   (x/(ln(1+x)))dx  determine a approximate value of I
letI=01xln(1+x)dxdetermineaapproximatevalueofI
Commented by Abdo msup. last updated on 21/Sep/19
there a error of calculus in the answer i will hid  this post ...
thereaerrorofcalculusintheansweriwillhidthispost
Commented by mathmax by abdo last updated on 22/Sep/19
we have ln^′ (1+x) =(1/(1+x)) =Σ_(n=0) ^∞  (−1)^n x^n  ⇒  ln(1+x) =Σ_(n=0) ^∞ (((−1)^n x^(n+1) )/(n+1)) +c  (c=0) ⇒  ln(1+x) =x−(x^2 /2) +(x^3 /3) −... ⇒x−(x^2 /2) ≤ln(1+x) ≤x ⇒  (1/x) ≤(1/(ln(1+x))) ≤(1/(x−(x^2 /2))) ⇒ 1 ≤ (x/(ln(1+x))) ≤(1/(1−(x/2))) ⇒  1≤ ∫_0 ^1   (x/(ln(1+x)))dx ≤∫_0 ^1   (dx/(1−(x/2)))  we have  ∫_0 ^1   (dx/(1−(x/2))) =∫_0 ^1   ((2dx)/(2−x)) =−2 ∫_0 ^1  (dx/(x−2)) =−2[ln∣x−2∣]_0 ^1 =−2(−ln2)  =2ln(2) ⇒ 1 ≤I ≤2ln(2)  so v_0 =((1+2ln(2))/2)  is a approximate  value of I .
wehaveln(1+x)=11+x=n=0(1)nxnln(1+x)=n=0(1)nxn+1n+1+c(c=0)ln(1+x)=xx22+x33xx22ln(1+x)x1x1ln(1+x)1xx221xln(1+x)11x2101xln(1+x)dx01dx1x2wehave01dx1x2=012dx2x=201dxx2=2[lnx2]01=2(ln2)=2ln(2)1I2ln(2)sov0=1+2ln(2)2isaapproximatevalueofI.

Leave a Reply

Your email address will not be published. Required fields are marked *