let-I-0-pi-4-e-2t-cos-4-t-dt-and-J-0-pi-4-e-2t-sin-4-tdt-1-calculate-I-J-and-I-J-2-find-the-value-of-I-and-J- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 66334 by mathmax by abdo last updated on 12/Aug/19 letI=∫0π4e−2tcos4tdtandJ=∫0π4e−2tsin4tdt1)calculateI+JandI−J2)findthevalueofIandJ. Commented by mathmax by abdo last updated on 13/Aug/19 1)I+J=∫0π4(cos4t+sin4t)e−2tdt=∫0π4((cos2t+sin2t)2−2sin2tcos2t)e−2tdt=∫0π4(1−12sin2(2t))e−2tdt=∫0π4e−2tdt−14∫0π4(1−cos(4t))e−2tdt=34∫0π4e−2tdt+14∫0π4cos(4t)e−2tdt∫0π4e−2tdt=[−12e−2t]0π4=−12(e−π2−1)∫0π4cos(4t)e−2tdt=Re(∫0π4e−2t+i4tdt)∫0π4e(−2+4i)tdt=[1−2+4ie(−2+4i)t]0π4=−12−4i{e(−2+4i)π4−1}=−(2+4i)20{e−π2(cos(π)+isin(π))−1}=1+2i10{1+e−π2}⇒∫0π4cos(4t)e−2tdt=110e−π2⇒I+J=−38(e−π2−1)+140e−π2=(140−38)e−π2+38=−1440e−π2+38=−720e−π2+38 Commented by mathmax by abdo last updated on 13/Aug/19 wehaveI−J=∫0π4(cos4t−sin4t)e−2tdt=∫0π4(cos2t−sin2t)e−2tdt=∫0π4cos(2t)e−2tdt=Re(∫0π4e−2t+i2tdt)and∫0π4e(−2+2i)tdt=[1−2+2ie(−2+2i)t]0π4=−12−2i{e(−2+2i)π4−1}=−2+2i8{e−π2i−1}=1+i4(1−ie−π2)=1−ie−π2+i+e−π24=1+e−π2+i(1−e−π2)4⇒∫0π4cos(2t)e−2tdt=14(1+e−π2)⇒I−J=14+14e−π2wehaveI+J=38−720e−π2⇒2I=14+38+(14−720)e−π2=58−110e−π2also2J=38−14+(−720−14)e−π2=18−35e−π2⇒I=516−120e−π2andJ=116−310e−π2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-pi-6-pi-6-1-tanx-1-sin-2x-dx-Next Next post: n-0-n-cos-n-pi-n-1-n-2-converge-ou-diverge- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.