Menu Close

let-I-0-pi-4-e-2t-cos-4-t-dt-and-J-0-pi-4-e-2t-sin-4-tdt-1-calculate-I-J-and-I-J-2-find-the-value-of-I-and-J-




Question Number 66334 by mathmax by abdo last updated on 12/Aug/19
let I =∫_0 ^(π/4)   e^(−2t)  cos^4 t dt and J=∫_0 ^(π/4)  e^(−2t)  sin^4 tdt  1)calculate  I+J and I−J  2) find the value of I and J.
letI=0π4e2tcos4tdtandJ=0π4e2tsin4tdt1)calculateI+JandIJ2)findthevalueofIandJ.
Commented by mathmax by abdo last updated on 13/Aug/19
1) I+J =∫_0 ^(π/4)  (cos^4 t +sin^4 t)e^(−2t) dt =∫_0 ^(π/4) ((cos^2 t+sin^2 t)^2 −2sin^2 tcos^2 t)e^(−2t) dt  =∫_0 ^(π/4) (1−(1/2)sin^2 (2t))e^(−2t) dt =∫_0 ^(π/4)  e^(−2t) dt−(1/4)∫_0 ^(π/4) (1−cos(4t))e^(−2t) dt  =(3/4) ∫_0 ^(π/4)  e^(−2t)  dt +(1/4) ∫_0 ^(π/4)  cos(4t)e^(−2t) dt   ∫_0 ^(π/4)  e^(−2t) dt  =[−(1/2)e^(−2t) ]_0 ^(π/4)  =−(1/2)(e^(−(π/2)) −1)  ∫_0 ^(π/4)  cos(4t)e^(−2t) dt =Re(∫_0 ^(π/4)  e^(−2t+i4t) dt)  ∫_0 ^(π/4)  e^((−2+4i)t) dt =[(1/(−2+4i))e^((−2+4i)t) ]_0 ^(π/4)  =−(1/(2−4i)) { e^((−2+4i)(π/4)) −1}  =−(((2+4i))/(20)){ e^(−(π/2)) (cos(π)+isin(π))−1}  =((1+2i)/(10)){ 1+e^(−(π/2)) } ⇒∫_0 ^(π/4)  cos(4t)e^(−2t) dt =(1/(10))e^(−(π/2))  ⇒  I +J =−(3/8)(e^(−(π/2)) −1) +(1/(40)) e^(−(π/2))  =((1/(40))−(3/8))e^(−(π/2))  +(3/8)  =−((14)/(40))e^(−(π/2))  +(3/8) =−(7/(20))e^(−(π/2))  +(3/8)
1)I+J=0π4(cos4t+sin4t)e2tdt=0π4((cos2t+sin2t)22sin2tcos2t)e2tdt=0π4(112sin2(2t))e2tdt=0π4e2tdt140π4(1cos(4t))e2tdt=340π4e2tdt+140π4cos(4t)e2tdt0π4e2tdt=[12e2t]0π4=12(eπ21)0π4cos(4t)e2tdt=Re(0π4e2t+i4tdt)0π4e(2+4i)tdt=[12+4ie(2+4i)t]0π4=124i{e(2+4i)π41}=(2+4i)20{eπ2(cos(π)+isin(π))1}=1+2i10{1+eπ2}0π4cos(4t)e2tdt=110eπ2I+J=38(eπ21)+140eπ2=(14038)eπ2+38=1440eπ2+38=720eπ2+38
Commented by mathmax by abdo last updated on 13/Aug/19
we have I−J =∫_0 ^(π/4) (cos^4 t−sin^4 t)e^(−2t) dt =∫_0 ^(π/4) (cos^2 t−sin^2 t)e^(−2t) dt  =∫_0 ^(π/4)  cos(2t)e^(−2t) dt =Re(∫_0 ^(π/4)  e^(−2t+i2t)  dt) and  ∫_0 ^(π/4)  e^((−2+2i)t) dt =[(1/(−2+2i))e^((−2+2i)t) ]_0 ^(π/4) =−(1/(2−2i)){ e^((−2+2i)(π/4)) −1}  =−((2+2i)/8){ e^(−(π/2)) i −1} =((1+i)/4)(1−i e^(−(π/2)) )  =((1−ie^(−(π/2)) +i+e^(−(π/2)) )/4) =((1+e^(−(π/2))  +i(1−e^(−(π/2)) ))/4) ⇒  ∫_0 ^(π/4)  cos(2t)e^(−2t) dt =(1/4)(1+e^(−(π/2)) ) ⇒ I−J =(1/4) +(1/4)e^(−(π/2))   we have I+J =(3/8)−(7/(20))e^(−(π/2))  ⇒2I =(1/4)+(3/8) +((1/4)−(7/(20)))e^(−(π/2))   =(5/8) −(1/(10))e^(−(π/2))    also 2J =(3/8)−(1/4) +(−(7/(20))−(1/4))e^(−(π/2))   =(1/8) −(3/5)e^(−(π/2))  ⇒  I =(5/(16)) −(1/(20))e^(−(π/2))     and J =(1/(16)) −(3/(10))e^(−(π/2))  .
wehaveIJ=0π4(cos4tsin4t)e2tdt=0π4(cos2tsin2t)e2tdt=0π4cos(2t)e2tdt=Re(0π4e2t+i2tdt)and0π4e(2+2i)tdt=[12+2ie(2+2i)t]0π4=122i{e(2+2i)π41}=2+2i8{eπ2i1}=1+i4(1ieπ2)=1ieπ2+i+eπ24=1+eπ2+i(1eπ2)40π4cos(2t)e2tdt=14(1+eπ2)IJ=14+14eπ2wehaveI+J=38720eπ22I=14+38+(14720)eπ2=58110eπ2also2J=3814+(72014)eπ2=1835eπ2I=516120eπ2andJ=116310eπ2.

Leave a Reply

Your email address will not be published. Required fields are marked *