Menu Close

let-I-0-pi-x-cos-4-x-dxand-J-0-pi-x-sin-4-xdx-1-calculate-I-J-and-I-J-2-find-the-values-of-I-and-J-




Question Number 78264 by msup trace by abdo last updated on 15/Jan/20
let I =∫_0 ^π x cos^4 x dxand J=∫_0 ^π x sin^4 xdx  1) calculate I+J and I−J  2) find the values of I and J
letI=0πxcos4xdxandJ=0πxsin4xdx1)calculateI+JandIJ2)findthevaluesofIandJ
Commented by jagoll last updated on 15/Jan/20
I= ∫_0 ^π xcos^4 x dx  let x= π−u  { ((x=0 ⇒u=π)),((x=π ⇒u=0)) :}  I= ∫_π ^0  (π−u){cos^4  (π−u)}(−du)  = ∫_0 ^π π cos^4 u du−I  2I=∫_0 ^π  πcos^4 x dx ⇒I= (π/2)∫_0 ^π cos^4 x dx
I=π0xcos4xdxletx=πu{x=0u=πx=πu=0I=0π(πu){cos4(πu)}(du)=π0πcos4uduI2I=π0πcos4xdxI=π2π0cos4xdx
Commented by jagoll last updated on 15/Jan/20
J = ∫_0 ^π xsin^4 x dx. let x=π−u  J=∫_0 ^π πsin^4 x dx − J  J= (π/2)∫_0 ^π  sin^4 x dx
J=π0xsin4xdx.letx=πuJ=π0πsin4xdxJJ=π2π0sin4xdx
Commented by jagoll last updated on 15/Jan/20
I+J = (π/2)∫_0 ^π  cos^4 x+sin^4 x dx  =(π/2)∫_0 ^π  (1−(1/2)sin^2 (2x))dx  =(π/2)∫_0 ^π ((1/4)+(1/4)cos (4x))dx
I+J=π2π0cos4x+sin4xdx=π2π0(112sin2(2x))dx=π2π0(14+14cos(4x))dx
Commented by mathmax by abdo last updated on 18/Jan/20
1) we have I +J =∫_0 ^π x(cos^4 x +sin^4 x)dx  =∫_0 ^π x{ (cos^2 x +sin^2 x)^2 −2cos^2 x sin^2 x}dx  =∫_0 ^π x{ 1−2((1/2)sin(2x))^2 }dx =∫_0 ^π x{1−(1/2)sin^2 (2x)}dx  =∫_0 ^π x{1−(1/2)×((1−cos(4x))/2)}dx =∫_0 ^π x{(3/4)+(1/4)cos(4x)}dx  =(3/4)∫_0 ^π xdx +(1/4) ∫_0 ^π  xcos(4x)dx  =(3/4)×(π^2 /2) +(1/4){ [(x/4)sin(4x)]_0 ^π −∫_0 ^π (1/4)sin(4x)dx}  =((3π^2 )/8) −(1/(16))[−(1/4)cos(4x)]_0 ^π  =((3π^2 )/8)  also we have  I−J =∫_0 ^π x(cos^4 x −sin^4 x)dx =∫_0 ^π x(cos^2 x −sin^2 x)dx  =∫_0 ^π xcos(2x)dx =[(x/2)sin(2x)]_0 ^π  −∫_0 ^π (1/2)sin(2x)dx}  =−(1/2)[−(1/2)cos(2x)]_0 ^π =0 ⇒I =J ⇒2I =((3π^2 )/8) ⇒I =((3π^2 )/(16)) and  J =((3π^2 )/(16))
1)wehaveI+J=0πx(cos4x+sin4x)dx=0πx{(cos2x+sin2x)22cos2xsin2x}dx=0πx{12(12sin(2x))2}dx=0πx{112sin2(2x)}dx=0πx{112×1cos(4x)2}dx=0πx{34+14cos(4x)}dx=340πxdx+140πxcos(4x)dx=34×π22+14{[x4sin(4x)]0π0π14sin(4x)dx}=3π28116[14cos(4x)]0π=3π28alsowehaveIJ=0πx(cos4xsin4x)dx=0πx(cos2xsin2x)dx=0πxcos(2x)dx=[x2sin(2x)]0π0π12sin(2x)dx}=12[12cos(2x)]0π=0I=J2I=3π28I=3π216andJ=3π216

Leave a Reply

Your email address will not be published. Required fields are marked *