Menu Close

let-I-n-0-1-x-n-e-x-dx-with-n-integr-natural-1-calculate-I-0-I-1-and-I-2-2-find-arelation-between-I-n-and-I-n-3-find-I-n-interms-of-n-




Question Number 66330 by mathmax by abdo last updated on 12/Aug/19
let I_n =∫_0 ^1  x^n  e^(−x)  dx    with n integr natural  1) calculate I_0  , I_1  and I_2   2)find arelation between I_n  and I_n   3) find I_n  interms of n.
letIn=01xnexdxwithnintegrnatural1)calculateI0,I1andI22)findarelationbetweenInandIn3)findInintermsofn.
Commented by mathmax by abdo last updated on 18/Aug/19
1)I_n =∫_0 ^1  x^n  e^(−x)  dx ⇒I_0 =∫_0 ^1  e^(−x) dx =[−e^(−x) ]_0 ^1 =1−e^(−1)   I_1 =∫_0 ^1  x e^(−x) dx =_(by parts) [−xe^(−x) ]_0 ^1  +∫_0 ^1 e^(−x) dx=−e^(−1) + 1−e^(−1)   =1−2e^(−1)   I_2 =∫_0 ^1  x^2  e^(−x) dx =_(by psrts)   [−x^2 e^(−x) ]_0 ^1  +∫_0 ^1 2x e^(−x) dx  =−e^(−1)  +2(1−2e^(−1) ) =2−3e^(−1)    2) by parts u =x^n  and v^′  =e^(−x)  ⇒I_n =[−x^n  e^(−x) ]_0 ^1 +∫_0 ^1 nx^(n−1)  e^(−x) dx  =−e^(−1)  +n∫_0 ^1  x^(n−1)  e^(−x) dx =n I_(n−1) −(1/e) ⇒I_n =nI_(n−1) −(1/e)  3)let V_n =(I_n /(n!))  we have V_(n+1) −V_n =(I_(n+1) /((n+1)!))−(I_n /(n!))  =(((n+1)I_n −(1/e))/((n+1)!)) −(I_n /(n!)) =(I_n /(n!))−(1/(e(n+1)!))−(I_n /(n!)) =−(1/(e(n+1)!)) ⇒  Σ_(k=0) ^(n−1) (V_(k+1) −V_k ) =−(1/e)Σ_(k=0) ^(n−1)  (1/((k+1)!)) =−(1/e)Σ_(k=1) ^n  (1/(k!)) ⇒  V_n −V_0 =−(1/e)Σ_(k=1) ^n  (1/(k!))  but V_0 =I_0 =1−(1/e) ⇒  V_n =−(1/e)(Σ_(k=1) ^n  (1/(k!))+1)+1 =1−(1/e)Σ_(k=0) ^n  (1/(k!)) ⇒  I_n =n!{1−(1/e)Σ_(k=0) ^n  (1/(k!))}  (n≥1)
1)In=01xnexdxI0=01exdx=[ex]01=1e1I1=01xexdx=byparts[xex]01+01exdx=e1+1e1=12e1I2=01x2exdx=bypsrts[x2ex]01+012xexdx=e1+2(12e1)=23e12)bypartsu=xnandv=exIn=[xnex]01+01nxn1exdx=e1+n01xn1exdx=nIn11eIn=nIn11e3)letVn=Inn!wehaveVn+1Vn=In+1(n+1)!Inn!=(n+1)In1e(n+1)!Inn!=Inn!1e(n+1)!Inn!=1e(n+1)!k=0n1(Vk+1Vk)=1ek=0n11(k+1)!=1ek=1n1k!VnV0=1ek=1n1k!butV0=I0=11eVn=1e(k=1n1k!+1)+1=11ek=0n1k!In=n!{11ek=0n1k!}(n1)

Leave a Reply

Your email address will not be published. Required fields are marked *