Menu Close

Let-I-z-pi-tan-z-z-4-dz-J-z-pi-cos-z-z-4-dz-and-K-z-pi-cos-Re-z-cos-Im-z-z-4-dz-Show-that-I-J-2-ipi-Show-that-J-K-




Question Number 134998 by snipers237 last updated on 09/Mar/21
   Let  I= ∫_(∣z∣=π) ((tan(z^− ))/(z−4)) dz     J=∫_(∣z∣=π) ((cos(z^− ))/(z−4)) dz   and  K=∫_(∣z∣=π) ((cos(Re(z))cos(Im(z)))/(z−4))dz   Show that  I=J(√2)=−iπ   Show that  J=K
$$\:\:\:{Let}\:\:{I}=\:\int_{\mid{z}\mid=\pi} \frac{{tan}\left(\overset{−} {{z}}\right)}{{z}−\mathrm{4}}\:{dz}\:\: \\ $$$$\:{J}=\int_{\mid{z}\mid=\pi} \frac{{cos}\left(\overset{−} {{z}}\right)}{{z}−\mathrm{4}}\:{dz}\:\:\:{and}\:\:{K}=\int_{\mid{z}\mid=\pi} \frac{{cos}\left({Re}\left({z}\right)\right){cos}\left({Im}\left({z}\right)\right)}{{z}−\mathrm{4}}{dz} \\ $$$$\:{Show}\:{that}\:\:{I}={J}\sqrt{\mathrm{2}}=−{i}\pi \\ $$$$\:{Show}\:{that}\:\:{J}={K} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *