Question Number 1585 by Rasheed Soomro last updated on 22/Aug/15

Commented by 112358 last updated on 22/Aug/15
![ω^3 −1=0 Cube root of unity⇒ω=e^((2kπi)/3) ,k=−1,0,1 Let ψ(x,y,z)=ω^x +ω^y +ω^z =e^((2xπik)/3) +e^((2kπiy)/3) +e^((2kπiz)/3) ψ(x,y,z)=cos(((2πxk)/3))+cos(((2πyk)/3))+cos(((2πzk)/3))+i[sin(((2kxπ)/3))+sin(((2πyk)/3))+sin(((2πzk)/3))] If ψ(x,y,z)=0⇒Re(ψ(x,y,z))=0 ,Im(ψ(x,y,z))=0 ∴cos(((2πxk)/3))+cos(((2πyk)/3))+cos(((2πzk)/3))=0 and sin(((2πxk)/3))+sin(((2πyk)/3))+sin(((2πzk)/3))=0 for k=−1,0,1 and x,y,z∈Z](https://www.tinkutara.com/question/Q1586.png)
Commented by 123456 last updated on 22/Aug/15

Answered by 123456 last updated on 23/Aug/15
![ω=e^(((2π)/3)ι) =cos ((2π)/3)+ısin ((2π)/3) some fact that help theorem: if z_1 ,z_2 ,z_3 are 3 unitary complex number such that their sum is 0, then the angle betwen them is 120° proof: since z_1 ,z_2 ,z_3 are unitary, we can write ∣z_1 ∣=∣z_2 ∣=∣z_3 ∣=1 z_1 =e^(φı) =cos φ+ısin φ z_2 =e^((φ+θ_1 )ı) =cos(φ+θ_1 )+ısin(φ+θ_1 ) z_3 =e^((φ+θ_2 )ı) =cos(φ+θ_2 )+ısin(φ+θ_2 ) z_1 +z_2 +z_3 =0 e^(φı) +e^((φ+θ_1 )ı) +e^((φ+θ_2 )ı) =0 cos φ+ısin φ+cos(φ+θ_1 )+ısin(φ+θ_1 )+cos(φ+θ_2 )+ısin(φ+θ_2 )=0 [cos φ+cos(φ+θ_1 )+cos(φ+θ_2 )]+ı[sin φ+sin(φ+θ_1 )+sin(φ+θ_2 )]=0 { ((cos φ+cos(φ+θ_1 )+cos(φ+θ_2 )=0)),((sin φ+sin(φ+θ_1 )+sin(φ+θ_2 )=0)) :} cos(α+β)=cos α cos β−sin α sin β sin(α+β)=cos α sin β+cos β sin α { ((cos φ(1+cos θ_1 +cos θ_2 )−sin φ(sin θ_1 +sin θ_2 )=0)),((sin φ(1+cos θ_1 +cos θ_2 )+cos φ(sin θ_1 +sin θ_2 )=0)) :} cos φ=a,sin φ=b,1+cos θ_1 +cos θ_2 =x,sin θ_1 +sin θ_2 =y,a^2 +b^2 =1 { ((ax−by=0)),((bx+ay=0)) :} Δ= determinant ((a,(−b)),(b,a))=a^2 +b^2 =1 Δx= determinant ((0,(−b)),(0,a))=0 Δy= determinant ((a,0),(b,0))=0 x=((Δx)/Δ)=0 y=((Δy)/Δ)=0 { ((1+cos θ_1 +cos θ_2 =0)),((sin θ_1 +sin θ_2 =0)) :} sin θ_1 =sin −θ_2 ⇔θ_1 =−θ_2 +2πk∨θ_1 =π+θ_2 +2πk,k∈Z θ_1 =π+θ_2 +2πk⇒1+cos θ_1 +cos θ_2 =1+cos(π+θ_2 +2πk)+cos θ_2 =1−cos θ_2 +cos θ_2 =1≠0 θ_1 =−θ_2 +2πk⇒1+cos θ_1 +cos θ_2 =1+cos(−θ_2 +2πk)+cos θ_2 =1+cos θ_2 +cos θ_2 =1+2cos θ_2 =0 cos θ_2 =−(1/2) θ_2 =((2π)/3)+2πj∨θ_2 =((4π)/3)+2πj,j∈Z θ_1 =−((2π)/3)+2π(j+k)∨θ_2 =−((4π)/3)+2π(j+k). the cube roots of unity are 1,e^(((2π)/3)ı) ,e^(((4π)/3)j) ⇒1,ω,ω^2 ω^n =1,n≡0(mod 3) ω^n =e^(((2π)/3)ı) ,n≡1(mod 3) ω^n =e^(((4π)/3)ı) ,n≡2(mod 3) then for ω^x +ω^y +ω^z =0 as shown above, them need to have a angle of 120° betwen them, wich imply that all the three roots apear, without loss of generaly take x≡0(mod 3) y≡1(mod 3) z≡2(mod 3) them x+y+z≡0+1+2≡3≡0(mod 3) wich imply that 3∣(x+y+z)](https://www.tinkutara.com/question/Q1588.png)
Commented by Rasheed Soomro last updated on 23/Aug/15

Answered by Rasheed Soomro last updated on 23/Aug/15
![x,y,z ∈ Z (given) All the integers wrt modulo 3 are of three types 3k, 3k+1, 3k+2 . So suppose each of x, y, z is one of above types. It can easily be shown that ω^x +ω^y +ω^z =0 ⇒ { ((x, y, z all are of different types)),(((wrt modulo 3))) :} [If two or three are of same type ω^x +ω^y +ω^z ≠0.] Let one of x, y, z is equal to 3l, another is equal to 3m+1 and remaining is equal to 3n+2 ω^x +ω^y +ω^z = ω^(3l) +ω^(3m+1) +ω^(3n+2) =1+ω+ω^2 =0 ⇒ { x+y+z= 3l+(3m+1)+(3n+2) = 3l+3m+3n+3=3(l+m+n+1) This implies that 3 ∣ (x+y+z) } Counter examples that prove that converse is not true: 1) Each of x,y,z is of 3k type. x+y+z=3l+3m+3n=3(l+m+n) 3 ∣ (x+y+z) But ω^x +ω^y +ω^z =ω^(3l) +ω^(3m) +ω^(3n) =1+1+1=3≠0 2) Each of x,y,z is of 3k+1 type. 3) Each of x,y,z is of 3k+2 type.](https://www.tinkutara.com/question/Q1591.png)