Menu Close

Let-J-0-f-x-x-1-2-dx-where-f-is-any-function-for-which-the-integral-exists-Show-that-J-0-x-2-f-x-x-1-2-dx-0-5-0-1-x-2-f-x-x-1-2-dx-0-f-u-2-du-




Question Number 2186 by Yozzi last updated on 07/Nov/15
Let J=∫_0 ^∞ f((x−x^(−1) )^2 )dx where f is  any function for which the integral  exists. Show that  J=∫_0 ^∞ x^(−2) f((x−x^(−1) )^2 )dx=0.5∫_0 ^∞ (1+x^(−2) )f((x−x^(−1) )^2 )dx=∫_0 ^∞ f(u^2 )du.
$${Let}\:{J}=\int_{\mathrm{0}} ^{\infty} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx}\:{where}\:{f}\:{is} \\ $$$${any}\:{function}\:{for}\:{which}\:{the}\:{integral} \\ $$$${exists}.\:{Show}\:{that} \\ $$$${J}=\int_{\mathrm{0}} ^{\infty} {x}^{−\mathrm{2}} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx}=\mathrm{0}.\mathrm{5}\int_{\mathrm{0}} ^{\infty} \left(\mathrm{1}+{x}^{−\mathrm{2}} \right){f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx}=\int_{\mathrm{0}} ^{\infty} {f}\left({u}^{\mathrm{2}} \right){du}. \\ $$$$ \\ $$
Answered by prakash jain last updated on 07/Nov/15
(1/t)=x⇒x=0 , t=∞;x=∞,t=0  −t^(−2) dt=dx  J=∫_0 ^( ∞) f((x−x^(−1) )^2 )dx  =−∫_∞ ^( 0) t^(−2) f((t^(−1) −t)^2 )dt  =−∫_∞ ^( 0) t^(−2) f((t−t^(−1) )^2 )dt  =∫_0 ^( ∞) t^(−2) f((t−t^(−1) )^2 )dt  =∫_0 ^( ∞) x^(−2) f((x−x^(−1) )^2 )dx  (change variable x=t)  J=∫_0 ^( ∞) f((x−x^(−1) )^2 )dx=∫_0 ^∞ x^(−2) f((x−x^(−1) )^2 )dx  2J=∫_0 ^( ∞) f((x−x^(−1) )^2 )dx+∫_0 ^∞ x^(−2) f((x−x^(−1) )^2 )dx  2J=∫_0 ^( ∞) (1+x^(−2) )f((x−x^(−1) )^2 )d  ⇒J=0.5∫_0 ^( ∞) (1+x^(−2) )f((x−x^(−1) )^2 )dx  x−x^(−1) =u⇒(1+x^(−2) )dx=du  x=0,u=−∞  x=∞,u=∞  J=0.5∫_0 ^( ∞) (1+x^(−2) )f((x−x^(−1) )^2 )dx  =0.5∫_(−∞) ^∞ f(u^2 )du  f(u^2 ) is even, hence  J=0.5×2∫_0 ^∞ f(u^2 )du=∫_0 ^∞ f(u^2 )du
$$\frac{\mathrm{1}}{{t}}={x}\Rightarrow{x}=\mathrm{0}\:,\:{t}=\infty;{x}=\infty,{t}=\mathrm{0} \\ $$$$−{t}^{−\mathrm{2}} {dt}={dx} \\ $$$${J}=\int_{\mathrm{0}} ^{\:\infty} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx} \\ $$$$=−\int_{\infty} ^{\:\mathrm{0}} {t}^{−\mathrm{2}} {f}\left(\left({t}^{−\mathrm{1}} −{t}\right)^{\mathrm{2}} \right){dt} \\ $$$$=−\int_{\infty} ^{\:\mathrm{0}} {t}^{−\mathrm{2}} {f}\left(\left({t}−{t}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\:\infty} {t}^{−\mathrm{2}} {f}\left(\left({t}−{t}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dt} \\ $$$$=\int_{\mathrm{0}} ^{\:\infty} {x}^{−\mathrm{2}} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx}\:\:\left({change}\:{variable}\:{x}={t}\right) \\ $$$${J}=\int_{\mathrm{0}} ^{\:\infty} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx}=\int_{\mathrm{0}} ^{\infty} {x}^{−\mathrm{2}} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx} \\ $$$$\mathrm{2}{J}=\int_{\mathrm{0}} ^{\:\infty} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx}+\int_{\mathrm{0}} ^{\infty} {x}^{−\mathrm{2}} {f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx} \\ $$$$\mathrm{2}{J}=\int_{\mathrm{0}} ^{\:\infty} \left(\mathrm{1}+{x}^{−\mathrm{2}} \right){f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){d} \\ $$$$\Rightarrow{J}=\mathrm{0}.\mathrm{5}\int_{\mathrm{0}} ^{\:\infty} \left(\mathrm{1}+{x}^{−\mathrm{2}} \right){f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx} \\ $$$${x}−{x}^{−\mathrm{1}} ={u}\Rightarrow\left(\mathrm{1}+{x}^{−\mathrm{2}} \right){dx}={du} \\ $$$${x}=\mathrm{0},{u}=−\infty \\ $$$${x}=\infty,{u}=\infty \\ $$$${J}=\mathrm{0}.\mathrm{5}\int_{\mathrm{0}} ^{\:\infty} \left(\mathrm{1}+{x}^{−\mathrm{2}} \right){f}\left(\left({x}−{x}^{−\mathrm{1}} \right)^{\mathrm{2}} \right){dx} \\ $$$$=\mathrm{0}.\mathrm{5}\int_{−\infty} ^{\infty} {f}\left({u}^{\mathrm{2}} \right){du} \\ $$$${f}\left({u}^{\mathrm{2}} \right)\:{is}\:{even},\:{hence} \\ $$$${J}=\mathrm{0}.\mathrm{5}×\mathrm{2}\int_{\mathrm{0}} ^{\infty} {f}\left({u}^{\mathrm{2}} \right){du}=\int_{\mathrm{0}} ^{\infty} {f}\left({u}^{\mathrm{2}} \right){du} \\ $$
Commented by Yozzi last updated on 07/Nov/15
Thanks!
$${Thanks}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *