Menu Close

Let-J-0-f-x-x-1-2-dx-where-f-is-any-function-for-which-the-integral-exists-Show-that-J-0-x-2-f-x-x-1-2-dx-0-5-0-1-x-2-f-x-x-1-2-dx-0-f-u-2-du-




Question Number 2186 by Yozzi last updated on 07/Nov/15
Let J=∫_0 ^∞ f((x−x^(−1) )^2 )dx where f is  any function for which the integral  exists. Show that  J=∫_0 ^∞ x^(−2) f((x−x^(−1) )^2 )dx=0.5∫_0 ^∞ (1+x^(−2) )f((x−x^(−1) )^2 )dx=∫_0 ^∞ f(u^2 )du.
LetJ=0f((xx1)2)dxwherefisanyfunctionforwhichtheintegralexists.ShowthatJ=0x2f((xx1)2)dx=0.50(1+x2)f((xx1)2)dx=0f(u2)du.
Answered by prakash jain last updated on 07/Nov/15
(1/t)=x⇒x=0 , t=∞;x=∞,t=0  −t^(−2) dt=dx  J=∫_0 ^( ∞) f((x−x^(−1) )^2 )dx  =−∫_∞ ^( 0) t^(−2) f((t^(−1) −t)^2 )dt  =−∫_∞ ^( 0) t^(−2) f((t−t^(−1) )^2 )dt  =∫_0 ^( ∞) t^(−2) f((t−t^(−1) )^2 )dt  =∫_0 ^( ∞) x^(−2) f((x−x^(−1) )^2 )dx  (change variable x=t)  J=∫_0 ^( ∞) f((x−x^(−1) )^2 )dx=∫_0 ^∞ x^(−2) f((x−x^(−1) )^2 )dx  2J=∫_0 ^( ∞) f((x−x^(−1) )^2 )dx+∫_0 ^∞ x^(−2) f((x−x^(−1) )^2 )dx  2J=∫_0 ^( ∞) (1+x^(−2) )f((x−x^(−1) )^2 )d  ⇒J=0.5∫_0 ^( ∞) (1+x^(−2) )f((x−x^(−1) )^2 )dx  x−x^(−1) =u⇒(1+x^(−2) )dx=du  x=0,u=−∞  x=∞,u=∞  J=0.5∫_0 ^( ∞) (1+x^(−2) )f((x−x^(−1) )^2 )dx  =0.5∫_(−∞) ^∞ f(u^2 )du  f(u^2 ) is even, hence  J=0.5×2∫_0 ^∞ f(u^2 )du=∫_0 ^∞ f(u^2 )du
1t=xx=0,t=;x=,t=0t2dt=dxJ=0f((xx1)2)dx=0t2f((t1t)2)dt=0t2f((tt1)2)dt=0t2f((tt1)2)dt=0x2f((xx1)2)dx(changevariablex=t)J=0f((xx1)2)dx=0x2f((xx1)2)dx2J=0f((xx1)2)dx+0x2f((xx1)2)dx2J=0(1+x2)f((xx1)2)dJ=0.50(1+x2)f((xx1)2)dxxx1=u(1+x2)dx=dux=0,u=x=,u=J=0.50(1+x2)f((xx1)2)dx=0.5f(u2)duf(u2)iseven,henceJ=0.5×20f(u2)du=0f(u2)du
Commented by Yozzi last updated on 07/Nov/15
Thanks!
Thanks!

Leave a Reply

Your email address will not be published. Required fields are marked *