Menu Close

Let-k-1-n-log-2-k-1994-find-the-positive-integer-n-




Question Number 6811 by Tawakalitu. last updated on 28/Jul/16
Let   Σ_(k = 1) ^n  log_2 k  =  1994  find the positive integer n ?
Letnk=1log2k=1994findthepositiveintegern?
Commented by Yozzii last updated on 29/Jul/16
Σ_(k=1) ^n log_2 k=log_2 1+log_2 2+log_2 3+...+log_2 n=s  s=log_2 (1×2×3×...×n)=log_2 n!  ⇒n!=2^s . But s=1994  ⇒n!=2^(1994)   ?
nk=1log2k=log21+log22+log23++log2n=ss=log2(1×2×3××n)=log2n!n!=2s.Buts=1994n!=21994?
Commented by Tawakalitu. last updated on 29/Jul/16
Thanks so much...    please is that where i will stop ?
Thankssomuchpleaseisthatwhereiwillstop?
Commented by Yozzii last updated on 29/Jul/16
If n=2⇒ n! has only the prime 2 in  its prime factorisation. If n≥3, 3 must  appear in the prime factorisation of  n! with the power of 3 being at least one.  n≥3⇒n!=1×2×3×{4×5×...×n}  or 3 divides n!. This is for n∈N.   In this problem, n∈N. We found that   n!=2^(1994) ⋙6=3!⇒n is at least 3. But,  if n∈N is at least 3 ⇒ 3∣n!. However,  3 does not divide 2^(1994)  or 3∤n! while   min(n)=3. So, no integer n exists satisfying  n!=2^(1994) .
Ifn=2n!hasonlytheprime2initsprimefactorisation.Ifn3,3mustappearintheprimefactorisationofn!withthepowerof3beingatleastone.n3n!=1×2×3×{4×5××n}or3dividesn!.ThisisfornN.Inthisproblem,nN.Wefoundthatn!=219946=3!nisatleast3.But,ifnNisatleast33n!.However,3doesnotdivide21994or3n!whilemin(n)=3.So,nointegernexistssatisfyingn!=21994.
Commented by Tawakalitu. last updated on 29/Jul/16
I now understand better, thanks so much.
Inowunderstandbetter,thankssomuch.

Leave a Reply

Your email address will not be published. Required fields are marked *