Menu Close

Let-k-xy-yz-zx-x-y-z-x-y-y-z-z-x-Find-the-minimum-and-maximum-value-of-k-




Question Number 74322 by naka3546 last updated on 22/Nov/19
Let    k  =  (((xy + yz + zx)(x + y + z))/((x + y)(y + z)(z + x)))  Find  the  minimum  and  maximum  value  of   k .
Letk=(xy+yz+zx)(x+y+z)(x+y)(y+z)(z+x)Findtheminimumandmaximumvalueofk.
Answered by MJS last updated on 23/Nov/19
k−1=((xyz)/((x+y)(x+z)(y+z)))  y=px∧z=qx  (1)  k−1=((pq)/((p+1)(p+q)(q+1)))  (d/dq)[((pq)/((p+1)(p+q)(q+1)))]=0  ((p(p−q^2 ))/((p+1)(p+q)^2 (q+1)^2 ))=0  ⇒ q=±(√p)  insert in (1)  k−1=(p/((1±(√p))^2 (p+1)))  (d/dp)[(p/((1±(√p))^2 (p+1)))]=0  ((1±p^(3/2) )/((1∓(√p))^3 (p+1)^2 ))=0  ⇒ p=1∧q=1  (no other real solution)  ⇒x=y=z  ⇒ k−1=(1/8)  ⇒ k=(9/8)  which is the absolute maximum  the minimum is −∞  put q=1:  k−1=(p/(2(p+1)^2 ))  lim_(p→−1) ((p/(2(p+1)^2 ))) =−∞
k1=xyz(x+y)(x+z)(y+z)y=pxz=qx(1)k1=pq(p+1)(p+q)(q+1)ddq[pq(p+1)(p+q)(q+1)]=0p(pq2)(p+1)(p+q)2(q+1)2=0q=±pinsertin(1)k1=p(1±p)2(p+1)ddp[p(1±p)2(p+1)]=01±p32(1p)3(p+1)2=0p=1q=1(nootherrealsolution)x=y=zk1=18k=98whichistheabsolutemaximumtheminimumisputq=1:k1=p2(p+1)2limp1(p2(p+1)2)=

Leave a Reply

Your email address will not be published. Required fields are marked *