Menu Close

Let-lt-x-n-gt-be-a-sequence-defined-by-x-n-1-1-k-x-n-k-x-n-n-N-Show-that-lt-x-n-gt-converges-to-k-k-1-x-1-gt-0-k-gt-1-




Question Number 141525 by hgrocks last updated on 20/May/21
Let <x_n > be a sequence defined by  x_(n+1)  = (1/k)(x_n +(k/x_n )) ∀ n ∈ N  Show that <x_n > converges to (√(k/(k−1)))  x_1 >0 , k>1
Let<xn>beasequencedefinedbyxn+1=1k(xn+kxn)nNShowthat<xn>convergestokk1x1>0,k>1
Answered by mathmax by abdo last updated on 21/May/21
x_(n+1) =f(x_n ) with f(x)=(1/k)(x+(k/x))  f is continue on R^★   f^′ (x)=(1/k)(1−(k/x^2 ))  =(1/k)×((x^2 −k)/x^2 ) =(1/(kx^2 ))(x−(√k))(x+(√k))  we can limit the variation on ]0,+∞[ due to u_n >0 for all n  x              0                  (√k)                      +∞  f^′              ∣   ∣    −         0          +  f               ∣   ∣  dec       f((√k))     incr   +∞  due to continuity of f  the limit of u_(n ) is the fix point of f  f(x)=x  ⇒(1/k)(x+(k/x))=x ⇒x^2  +k=kx^2  ⇒(k−1)x^2  =k ⇒  but  x>0 ⇒x=(√(k/(k−1)))(   k>1)
xn+1=f(xn)withf(x)=1k(x+kx)fiscontinueonRf(x)=1k(1kx2)=1k×x2kx2=1kx2(xk)(x+k)wecanlimitthevariationon]0,+[duetoun>0forallnx0k+f0+fdecf(k)incr+duetocontinuityoffthelimitofunisthefixpointofff(x)=x1k(x+kx)=xx2+k=kx2(k1)x2=kbutx>0x=kk1(k>1)
Commented by hgrocks last updated on 21/May/21
Thanks a lot .★★
Thanksalot.

Leave a Reply

Your email address will not be published. Required fields are marked *