Menu Close

Let-lt-x-n-gt-be-a-sequence-defined-by-x-n-1-1-k-x-n-k-x-n-n-N-Show-that-lt-x-n-gt-converges-to-k-k-1-x-1-gt-0-k-gt-1-




Question Number 141525 by hgrocks last updated on 20/May/21
Let <x_n > be a sequence defined by  x_(n+1)  = (1/k)(x_n +(k/x_n )) ∀ n ∈ N  Show that <x_n > converges to (√(k/(k−1)))  x_1 >0 , k>1
$$\mathrm{Let}\:<\mathrm{x}_{\mathrm{n}} >\:\mathrm{be}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{defined}\:\mathrm{by} \\ $$$$\mathrm{x}_{\mathrm{n}+\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{k}}\left(\mathrm{x}_{\mathrm{n}} +\frac{\mathrm{k}}{\mathrm{x}_{\mathrm{n}} }\right)\:\forall\:\mathrm{n}\:\in\:\mathbb{N} \\ $$$$\mathrm{Show}\:\mathrm{that}\:<\mathrm{x}_{\mathrm{n}} >\:\mathrm{converges}\:\mathrm{to}\:\sqrt{\frac{\mathrm{k}}{\mathrm{k}−\mathrm{1}}} \\ $$$$\mathrm{x}_{\mathrm{1}} >\mathrm{0}\:,\:\mathrm{k}>\mathrm{1} \\ $$
Answered by mathmax by abdo last updated on 21/May/21
x_(n+1) =f(x_n ) with f(x)=(1/k)(x+(k/x))  f is continue on R^★   f^′ (x)=(1/k)(1−(k/x^2 ))  =(1/k)×((x^2 −k)/x^2 ) =(1/(kx^2 ))(x−(√k))(x+(√k))  we can limit the variation on ]0,+∞[ due to u_n >0 for all n  x              0                  (√k)                      +∞  f^′              ∣   ∣    −         0          +  f               ∣   ∣  dec       f((√k))     incr   +∞  due to continuity of f  the limit of u_(n ) is the fix point of f  f(x)=x  ⇒(1/k)(x+(k/x))=x ⇒x^2  +k=kx^2  ⇒(k−1)x^2  =k ⇒  but  x>0 ⇒x=(√(k/(k−1)))(   k>1)
$$\mathrm{x}_{\mathrm{n}+\mathrm{1}} =\mathrm{f}\left(\mathrm{x}_{\mathrm{n}} \right)\:\mathrm{with}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{k}}\left(\mathrm{x}+\frac{\mathrm{k}}{\mathrm{x}}\right)\:\:\mathrm{f}\:\mathrm{is}\:\mathrm{continue}\:\mathrm{on}\:\mathrm{R}^{\bigstar} \\ $$$$\mathrm{f}^{'} \left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{k}}\left(\mathrm{1}−\frac{\mathrm{k}}{\mathrm{x}^{\mathrm{2}} }\right)\:\:=\frac{\mathrm{1}}{\mathrm{k}}×\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{k}}{\mathrm{x}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{kx}^{\mathrm{2}} }\left(\mathrm{x}−\sqrt{\mathrm{k}}\right)\left(\mathrm{x}+\sqrt{\mathrm{k}}\right) \\ $$$$\left.\mathrm{we}\:\mathrm{can}\:\mathrm{limit}\:\mathrm{the}\:\mathrm{variation}\:\mathrm{on}\:\right]\mathrm{0},+\infty\left[\:\mathrm{due}\:\mathrm{to}\:\mathrm{u}_{\mathrm{n}} >\mathrm{0}\:\mathrm{for}\:\mathrm{all}\:\mathrm{n}\right. \\ $$$$\mathrm{x}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sqrt{\mathrm{k}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$$\mathrm{f}^{'} \:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:\:\:\mid\:\:\:\:−\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:+ \\ $$$$\mathrm{f}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:\:\:\mid\:\:\mathrm{dec}\:\:\:\:\:\:\:\mathrm{f}\left(\sqrt{\mathrm{k}}\right)\:\:\:\:\:\mathrm{incr}\:\:\:+\infty \\ $$$$\mathrm{due}\:\mathrm{to}\:\mathrm{continuity}\:\mathrm{of}\:\mathrm{f}\:\:\mathrm{the}\:\mathrm{limit}\:\mathrm{of}\:\mathrm{u}_{\mathrm{n}\:} \mathrm{is}\:\mathrm{the}\:\mathrm{fix}\:\mathrm{point}\:\mathrm{of}\:\mathrm{f} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}\:\:\Rightarrow\frac{\mathrm{1}}{\mathrm{k}}\left(\mathrm{x}+\frac{\mathrm{k}}{\mathrm{x}}\right)=\mathrm{x}\:\Rightarrow\mathrm{x}^{\mathrm{2}} \:+\mathrm{k}=\mathrm{kx}^{\mathrm{2}} \:\Rightarrow\left(\mathrm{k}−\mathrm{1}\right)\mathrm{x}^{\mathrm{2}} \:=\mathrm{k}\:\Rightarrow \\ $$$$\mathrm{but}\:\:\mathrm{x}>\mathrm{0}\:\Rightarrow\mathrm{x}=\sqrt{\frac{\mathrm{k}}{\mathrm{k}−\mathrm{1}}}\left(\:\:\:\mathrm{k}>\mathrm{1}\right) \\ $$
Commented by hgrocks last updated on 21/May/21
Thanks a lot .★★
$$\mathrm{Thanks}\:\mathrm{a}\:\mathrm{lot}\:.\bigstar\bigstar \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *