Menu Close

let-n-0-2pi-cos-x-cos-2x-cos-nx-dx-for-which-integers-n-1-n-10-is-n-0-




Question Number 139474 by mathdanisur last updated on 27/Apr/21
let:  Ω_n =∫_( 0) ^( 2π) cos(x)∙cos(2x)∙...∙cos(nx) dx  for which integers n, 1≤n≤10, is Ω_n ≠0?
let:Ωn=2π0cos(x)cos(2x)cos(nx)dxforwhichintegersn,1n10,isΩn0?
Answered by mathmax by abdo last updated on 28/Apr/21
Φ_n =∫_0 ^π  cosx.cos(2x)....cos(nx)dx +∫_π ^(2π)  cosx cos(2x)....cos(nx)dx  (→x=π+t) =∫_0 ^π  cosx.cos(2x)...cos(nx)dx+∫_0 ^π cos(π+t).cos(π+2t)...cos(nπ+nt)dt  =∫_0 ^π  Π_(k=1) ^n  cos(kx)dx +∫_0 ^π  Π_(k=1) ^n  cos(kπ +kx)dx  =∫_0 ^π  Π_(k=1) ^n  cos(kx)dx+∫_0 ^π  Π_(k=1) ^n  (−1)^k  cos(kx)dx  =∫_0 ^π  Π_(k=1) ^n  cos(kx)dx +(−1)^((n(n+1))/2)  ∫_0 ^π  Π_(k=1) ^n  cos(kx)dx  =(1+(−1)^((n(n+1))/2) )∫_0 ^π  Π_(k=1) ^n  cos(kx)dx so Φ_n ≠0 ⇒  1+(−1)^((n(n+1))/2)  ≠0 and ∫_0 ^π cos(x).cos(2x)...cos(nx)dx ≠0  ....be continued...
Φn=0πcosx.cos(2x).cos(nx)dx+π2πcosxcos(2x).cos(nx)dx(x=π+t)=0πcosx.cos(2x)cos(nx)dx+0πcos(π+t).cos(π+2t)cos(nπ+nt)dt=0πk=1ncos(kx)dx+0πk=1ncos(kπ+kx)dx=0πk=1ncos(kx)dx+0πk=1n(1)kcos(kx)dx=0πk=1ncos(kx)dx+(1)n(n+1)20πk=1ncos(kx)dx=(1+(1)n(n+1)2)0πk=1ncos(kx)dxsoΦn01+(1)n(n+1)20and0πcos(x).cos(2x)cos(nx)dx0.becontinued
Commented by mathdanisur last updated on 30/Apr/21
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *