Menu Close

Let-n-be-a-positive-integer-such-that-one-of-the-roofs-of-the-quadratic-equation-4x-2-4-3-4-x-3-n-24-0-is-an-integer-Find-the-value-of-n-




Question Number 8957 by Sopheak last updated on 07/Nov/16
   Let n be a positive integer such that one of  the roofs of the quadratic equation   4x^2 −(4(√3)+4)x+(√3)n−24=0 is an integer   Find the value of n
Letnbeapositiveintegersuchthatoneoftheroofsofthequadraticequation4x2(43+4)x+3n24=0isanintegerFindthevalueofn
Commented by prakash jain last updated on 07/Nov/16
(((4(√3)+4)±(√((4(√3)+4)^2 −4∙4((√3)n−24))))/8)  =((4(1+(√3))±4(√(4+2(√3)−(√3)n+24)))/8)  =(((1+(√3))±(√(28+(2−n)(√3))))/2)  if one of the roots is an integer then  (√(28+(2−n)(√3))) contain ±(√3) to  cancel out (√3) term in (1+(√3))  (√(28+(2−n)(√3)))=a±(√3)  2a=±(2−n)   (i)  a^2 +3=28⇒a=±5  (ii)  from (i)  a=5⇒n=12 or n=−8  a=−5⇒n=12 or n=−8  n=−8 is invalid since n>0.  hence n=12  check  4x^2 −4(1+(√3))x+12((√3)−2)=0  x^2 −(1+(√3))x+3((√3)−2)=0  x^2 −3x+(2−(√3))x−3(2−(√3))=0  (x−3)(x+2−(√3))=0  x=3 is an integer solution.
(43+4)±(43+4)244(3n24)8=4(1+3)±44+233n+248=(1+3)±28+(2n)32ifoneoftherootsisanintegerthen28+(2n)3contain±3tocancelout3termin(1+3)28+(2n)3=a±32a=±(2n)(i)a2+3=28a=±5(ii)from(i)a=5n=12orn=8a=5n=12orn=8n=8isinvalidsincen>0.hencen=12check4x24(1+3)x+12(32)=0x2(1+3)x+3(32)=0x23x+(23)x3(23)=0(x3)(x+23)=0x=3isanintegersolution.

Leave a Reply

Your email address will not be published. Required fields are marked *