Menu Close

Let-P-1-p-1-p-2-p-1-1-p-2-a-1-1-a-1-2-a-2-1-a-2-2-and-that-P-n-be-the-nth-power-of-P-evaluated-as-P-n-P-P-n-1-i-e-by-successive-pre-multiplication-of-P-to-P-2




Question Number 4638 by Yozzii last updated on 17/Feb/16
Let P= (((1−p_1 ),p_2 ),(p_1 ,(1−p_2 )) )= ((a_(1,1) ,a_(1,2) ),(a_(2,1) ,a_(2,2) ) )  and that P^n  be the nth power of P evaluated  as P^n =P×P^(n−1) ;i.e by successive   pre−multiplication of P to P^2 ,P^3 ,P^4 ,...  up to P^(n−1) . Show that the element of  P^n  in the second row and first column  is a_(2,1) =((p_1 (1−(1−p_1 −p_2 )^n ))/(p_1 +p_2 )).   {The columns of P^n  represent   probability vectors for all n∈N. Hence,  a_(1,1) +a_(2,1) =1 and a_(1,2) +a_(2,2) =1 for example.}
LetP=(1p1p2p11p2)=(a1,1a1,2a2,1a2,2)andthatPnbethenthpowerofPevaluatedasPn=P×Pn1;i.ebysuccessivepremultiplicationofPtoP2,P3,P4,uptoPn1.ShowthattheelementofPninthesecondrowandfirstcolumnisa2,1=p1(1(1p1p2)n)p1+p2.{ThecolumnsofPnrepresentprobabilityvectorsforallnN.Hence,a1,1+a2,1=1anda1,2+a2,2=1forexample.}

Leave a Reply

Your email address will not be published. Required fields are marked *