Let-P-1-p-1-p-2-p-1-1-p-2-a-1-1-a-1-2-a-2-1-a-2-2-and-that-P-n-be-the-nth-power-of-P-evaluated-as-P-n-P-P-n-1-i-e-by-successive-pre-multiplication-of-P-to-P-2 Tinku Tara June 3, 2023 Matrices and Determinants 0 Comments FacebookTweetPin Question Number 4638 by Yozzii last updated on 17/Feb/16 LetP=(1−p1p2p11−p2)=(a1,1a1,2a2,1a2,2)andthatPnbethenthpowerofPevaluatedasPn=P×Pn−1;i.ebysuccessivepre−multiplicationofPtoP2,P3,P4,…uptoPn−1.ShowthattheelementofPninthesecondrowandfirstcolumnisa2,1=p1(1−(1−p1−p2)n)p1+p2.{ThecolumnsofPnrepresentprobabilityvectorsforalln∈N.Hence,a1,1+a2,1=1anda1,2+a2,2=1forexample.} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-70168Next Next post: Question-135709 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.