Menu Close

Let-p-and-q-be-positive-integers-having-no-positive-common-divisors-except-unity-Let-z-1-z-2-z-q-be-the-q-values-of-z-p-q-where-z-is-a-fixed-complex-number-Then-the-product-z-1-z-2-z




Question Number 140248 by EnterUsername last updated on 05/May/21
Let p and q be positive integers having no positive  common divisors except unity. Let z_1 , z_2 ,..., z_q  be the  q values of z^(p/q) , where z is a fixed complex number. Then  the product z_1 z_2 ...z_q  is equal to  (A) z^p , if q is odd                         (B) −z^p , if q is even  (C) z^p , if q is even                        (D) −z^p , if q is odd
Letpandqbepositiveintegershavingnopositivecommondivisorsexceptunity.Letz1,z2,,zqbetheqvaluesofzp/q,wherezisafixedcomplexnumber.Thentheproductz1z2zqisequalto(A)zp,ifqisodd(B)zp,ifqiseven(C)zp,ifqiseven(D)zp,ifqisodd
Answered by mr W last updated on 05/May/21
z=re^(θi) =re^((2kπ+θ)i)   z_k =z^(p/q) =r^(p/q) e^((((2kπ+θ)p)/q)i) ,k=0,1,...,q−1  Πz_k =r^p e^((((2π×((q(q−1))/2)+qθ)p)/q)i) =r^p e^((qπ−π+θ)pi)   =(re^((qπ−π+θ)i) )^p   =(re^(θi) e^((q−1)πi) )^p   =(ze^((q−1)πi) )^p   =z^p e^(p(q−1)πi)   = { ((z^p  if p(q−1) is even)),((−z^p  if p(q−1) is odd)) :}    (A) if q is old, p(q−1) is even,  result is z^p ⇒ correct    (B) if q is even, then p is odd, then  p(q−1) is odd, the result is −z^p ,  ⇒correct.
z=reθi=re(2kπ+θ)izk=zp/q=rp/qe(2kπ+θ)pqi,k=0,1,,q1Πzk=rpe(2π×q(q1)2+qθ)pqi=rpe(qππ+θ)pi=(re(qππ+θ)i)p=(reθie(q1)πi)p=(ze(q1)πi)p=zpep(q1)πi={zpifp(q1)isevenzpifp(q1)isodd(A)ifqisold,p(q1)iseven,resultiszpcorrect(B)ifqiseven,thenpisodd,thenp(q1)isodd,theresultiszp,correct.
Commented by EnterUsername last updated on 05/May/21
Thank you, Sir
Thankyou,Sir

Leave a Reply

Your email address will not be published. Required fields are marked *