Let-p-and-q-be-positive-integers-having-no-positive-common-divisors-except-unity-Let-z-1-z-2-z-q-be-the-q-values-of-z-p-q-where-z-is-a-fixed-complex-number-Then-the-product-z-1-z-2-z Tinku Tara June 3, 2023 Algebra 0 Comments FacebookTweetPin Question Number 140248 by EnterUsername last updated on 05/May/21 Letpandqbepositiveintegershavingnopositivecommondivisorsexceptunity.Letz1,z2,…,zqbetheqvaluesofzp/q,wherezisafixedcomplexnumber.Thentheproductz1z2…zqisequalto(A)zp,ifqisodd(B)−zp,ifqiseven(C)zp,ifqiseven(D)−zp,ifqisodd Answered by mr W last updated on 05/May/21 z=reθi=re(2kπ+θ)izk=zp/q=rp/qe(2kπ+θ)pqi,k=0,1,…,q−1Πzk=rpe(2π×q(q−1)2+qθ)pqi=rpe(qπ−π+θ)pi=(re(qπ−π+θ)i)p=(reθie(q−1)πi)p=(ze(q−1)πi)p=zpep(q−1)πi={zpifp(q−1)iseven−zpifp(q−1)isodd(A)ifqisold,p(q−1)iseven,resultiszp⇒correct(B)ifqiseven,thenpisodd,thenp(q−1)isodd,theresultis−zp,⇒correct. Commented by EnterUsername last updated on 05/May/21 Thankyou,Sir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-74713Next Next post: Question-74716 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.