Menu Close

Let-p-j-represent-the-j-th-prime-number-Now-define-the-number-n-whose-decimal-representation-is-written-out-in-terms-of-p-j-j-N-in-the-following-way-n-0-p-1-p-2-p-3-p-4-p-5-p-j-p-j-1-p-j-




Question Number 5216 by Yozzii last updated on 01/May/16
Let p_j  represent the j−th prime number.  Now, define the number n whose  decimal representation is written out  in terms of p_j  (j∈N) in the following  way:  n=0.p_1 p_2 p_3 p_4 p_5 ...p_j p_(j+1) p_(j+2) ...  or n=0.(2)(3)(5)(7)(11)...(521)(523)(541)...  ⇒n=0.235711...521523541...  Prove or disprove that n is irrational.
Letpjrepresentthejthprimenumber.Now,definethenumbernwhosedecimalrepresentationiswrittenoutintermsofpj(jN)inthefollowingway:n=0.p1p2p3p4p5pjpj+1pj+2orn=0.(2)(3)(5)(7)(11)(521)(523)(541)n=0.235711521523541Proveordisprovethatnisirrational.
Answered by FilupSmith last updated on 01/May/16
If we assume n is rational,  ∴ n=(a/b),  a,b∈Z    (non reducible)  p_j =jth prime    ∴n=(p_1 /(10))+(p_2 /(100))+(p_3 /(1000))+...+(p_j /(10^j ))  n=((100p_1 +10p_2 )/(1000))+(p_3 /(1000))+(p_4 /(10000))+...  n=((100000p_1 +10000p_2 +1000p_3 )/(1000000))+(p_4 /(10000))+...  n=((10^(j−1) p_1 +10^(j−2) p_2 +...)/(10^j ))       usure if this is correct  thus continuing we can always reduce  the fraction.    ∴ irrational       ??? is this enough to prove???                                     i dont think so.    Please check over this I am usure of the  reliability of this proof. I am sure I   could be wrong!
Ifweassumenisrational,n=ab,a,bZ(nonreducible)pj=jthprimen=p110+p2100+p31000++pj10jn=100p1+10p21000+p31000+p410000+n=100000p1+10000p2+1000p31000000+p410000+n=10j1p1+10j2p2+10jusureifthisiscorrectthuscontinuingwecanalwaysreducethefraction.irrational???isthisenoughtoprove???idontthinkso.PleasecheckoverthisIamusureofthereliabilityofthisproof.IamsureIcouldbewrong!
Commented by Rasheed Soomro last updated on 03/May/16
If p_(i ) consist of n digits then each digit  has its own denominator, not (p_i /(10^i )) .  For example place value of 11 in given number  is not equal to ((11)/(10^5 )) but is equal to (1/(10^5 ))+(1/(10^6 )) .
Ifpiconsistofndigitstheneachdigithasitsowndenominator,notpi10i.Forexampleplacevalueof11ingivennumberisnotequalto11105butisequalto1105+1106.
Commented by FilupSmith last updated on 04/May/16
ahh I see. My mistake
ahhIsee.Mymistake

Leave a Reply

Your email address will not be published. Required fields are marked *