Menu Close

let-P-n-X-n-X-n-1-X-2-X-1-R-X-1-prove-that-P-n-have-one-root-x-n-inside-0-2-study-the-sequence-x-n-




Question Number 73052 by mathmax by abdo last updated on 05/Nov/19
let P_n =X^n  +X^(n−1)  +....+X^2  +X−1 ∈R[X]  1)prove that P_n have one root x_n  inside ]0,+∞[  2)study the sequence x_n
letPn=Xn+Xn1+.+X2+X1R[X]1)provethatPnhaveonerootxninside]0,+[2)studythesequencexn
Answered by mind is power last updated on 06/Nov/19
P_n ′=Σ_(k=1) ^n kx^(k−1) >0  pn(0)=−1  P_n (1)=n−1≥0 if n≥2  n=0 ,p=0  p_1 =x−1⇒x_1 =1  ∀n≥2   x_n <1  ⇒P_(n+1) (x_n )=Σ_(k=1) ^(k=n+1) x_n ^k   −1=x_n ^(n+1) >0  p_(n+1) (x_(n+1) )=0⇒x_(n+1) <x_n   we have x_n  decrease sequence and x_n ∈[0,1[  x_n cv  p_n (x)=((x^(n+1) −1)/(x−1))−2  ⇒p_n (x)=0⇔x^(n+1) −2x+1=0  ⇒x^(n+1) −2x=−1  let x_2   x^2 +x−1=0  ⇒x_2 =((−1+(√5))/2)<1  for n≥2  x_n ^(n+1) ≤x_2 ^(n+1) =(((−1+(√5))/2))^(n+1) →0  p_n (x_n )=0⇔x_n ^(n+1) −2x+1=0  tack n→+∞  withe X_n ^(n+1) →0  ⇒x_n →(1/2)
Pn=nk=1kxk1>0pn(0)=1Pn(1)=n10ifn2n=0,p=0p1=x1x1=1n2xn<1Pn+1(xn)=k=n+1k=1xnk1=xnn+1>0pn+1(xn+1)=0xn+1<xnwehavexndecreasesequenceandxn[0,1[xncvpn(x)=xn+11x12pn(x)=0xn+12x+1=0xn+12x=1letx2x2+x1=0x2=1+52<1forn2xnn+1x2n+1=(1+52)n+10pn(xn)=0xnn+12x+1=0tackn+witheXnn+10xn12

Leave a Reply

Your email address will not be published. Required fields are marked *