Question Number 73059 by mathmax by abdo last updated on 05/Nov/19

Commented by mathmax by abdo last updated on 06/Nov/19
![1) P_n (x)=0 ⇔(x+1)^n =(x−1)^n ⇔(((x−1)/(x+1)))^n =1 let z=((x−1)/(x+1)) (e) ⇒z^n =1 ⇒z^n =e^(i2kπ) ⇒z_k =e^((i2kπ)/n) and k∈[[0,n−1]] z=((x−1)/(x+1)) ⇒zx+z =x−1 ⇒(z−1)x=−z−1 ⇒x=((1+z)/(1−z)) ⇒ the roots of P_n (x)=0 are x_k =((1+z_k )/(1−z_k )) =((1+e^((i2kπ)/n) )/(1−e^((i2kπ)/n) )) =((1+cos(((2kπ)/n))+isin(((2kπ)/n)))/(1−cos(((2kπ)/n))−isin(((2kπ)/n)))) =((2cos^2 (((kπ)/n))+2isin(((kπ)/n))cos(((kπ)/n)))/(2sin^2 (((kπ)/n))−2isin(((kπ)/n))cos(((kπ)/n)))) =((cos(((kπ)/n))e^(i((kπ)/n)) )/(−isin(((kπ)/n))e^((ikπ)/n) )) =i cotan(((kπ)/n)) ⇒x_k =i cotan(((kπ)/n)) with k∈[[1,n−1]] and P_n (x)=aΠ_(k=1) ^(n−1) (x−icotan(((kπ)/n))) letfind a we have P_n (x)=Σ_(k=0) ^n C_n ^k x^k −Σ_(k=0) ^n C_n ^k x^k (−1)^(n−k) =Σ_(k=0) ^n { 1−(−1)^(n−k) }C_n ^k x^k ⇒a =2 C_n ^(n−1) =2n ⇒ P_n (x)=2nΠ_(k=1) ^(n−1) (x−i cotan(((kπ)/n))) ⇒P_(2n+1) (x) =2(2n+1)Π_(k=1) ^(2n) (x−icotan(((kπ)/(2n+1)))) ⇒ P_(2n+1) (0) =2(2n+1)Π_(k=1) ^(2n) (−icotan(((kπ)/(2n+1)))) =2(2n+1)(−i)^(2n) Π_(k=1) ^(2n) cotan(((kπ)/(2n+1))) and P_n (0)=1−(−1)^n ⇒P_(2n+1) (0) =2 ⇒(2n+1)(−1)^n Π_(k=1) ^(2n) cotan(((kπ)/(2n+1)))=1 ⇒ (−1)^n Π_(k=1) ^(2n) cotan(((kπ)/(2n+1)))=(1/(2n+1)) we have Π_(k=1) ^(2n) cotan(((kπ)/(2n+1)))=Π_(k=1) ^n cotan(((kπ)/(2n+1)))Π_(k=n+1) ^(2n) cotan(((kπ)/(2n+1))) =_(k−n=p) Π_(k=1) ^n cotan(((kπ)/(2n+1)))×Π_(p=1) ^n cotan((((n+p)π)/(2n+1))) rest to prove thst Π_(p=1) ^n cotan((((n+p)π)/(2n+1)))=(−1)^n Π_(p=1) ^(n ) cotan(((pπ)/(2n+1))) ⇒(Π_(k=1) ^n cotan(((kπ)/(2n+1))))^2 =(1/(2n+1)) ⇒Π_(k=1) ^n cotan(((kπ)/(2n+1)))=(1/( (√(2n+1))))](https://www.tinkutara.com/question/Q73101.png)
Commented by mind is power last updated on 06/Nov/19

Commented by mathmax by abdo last updated on 06/Nov/19

Answered by mind is power last updated on 06/Nov/19
![p_n (x)=0⇒((x+1)/(x−1))=e^((2ikπ)/n) ,k≤n ⇒x(1−e^((2ikπ)/n) )=−e^((2ikπ)/n) −1 ⇒k≠0 x=((e^((2ikπ)/n) +1)/(e^((2ikπ)/n) −1))=((e^(i((kπ)/n)) (2cos(((kπ)/n))))/(e^(i((kπ)/n)) (2isin(((kπ)/n)))))=−icot(((kπ)/n)) p_n (x)=aΠ_(k=1) ^(n−1) (x+icot(((kπ)/n)) let n=2p+1 p_n (x)=Π_(k=1) ^(2p) (x+icot(((kπ)/(2p+1)))) =Π_(k=1) ^p (x+icot(((kπ)/(2p+1)))).Π_(k=p+1) ^(2p) (x+icot(((kπ)/(2p+1))) =Π_(k=1) ^p (x+icot(((kπ)/(2p+1)))).Π_(k=0) ^(p−1) (x+icot(((2p−k)π)/(2p+1)))) =Π_(k=1) ^p (x+icot(((kπ)/(2p+1))))Π_(k=0) ^(p−1) (x−icot(((k+1)/(2p+1)))π)=(1+x)^n −(x−1)^n pour x=0 onaΠ_(k=1) ^p (icot(((kπ)/(2p+1))))(Π_(k=1) ^p −icot(((kπ)/(2p+1))))= ⇒{Π_(k=1) ^p cot(((kπ)/(2p+1)))}^2 =(2/a) ⇒Π_(k=1) ^p cot(((kπ)/(2p+1)))=(√(2/a))=(1/( (√(2p+1)))) a=2C_n ^1 =2n=4p+2 cause ∀k∈[1,n] 0< ((kπ)/(2p+1))<(π/2)⇒cot(((kπ)/(2p+1)))>0](https://www.tinkutara.com/question/Q73089.png)