Menu Close

let-P-n-x-x-1-n-x-1-n-1-fartorize-inside-C-x-P-n-x-2-calculate-k-1-p-cotan-kpi-2p-1-




Question Number 73059 by mathmax by abdo last updated on 05/Nov/19
let P_n (x)=(x+1)^n −(x−1)^n   1) fartorize inside C(x) P_n (x)  2)calculate Π_(k=1) ^p  cotan(((kπ)/(2p+1)))
letPn(x)=(x+1)n(x1)n1)fartorizeinsideC(x)Pn(x)2)calculatek=1pcotan(kπ2p+1)
Commented by mathmax by abdo last updated on 06/Nov/19
1) P_n (x)=0 ⇔(x+1)^n =(x−1)^n  ⇔(((x−1)/(x+1)))^n =1 let z=((x−1)/(x+1))  (e) ⇒z^n =1 ⇒z^n =e^(i2kπ)  ⇒z_k =e^((i2kπ)/n)   and k∈[[0,n−1]]  z=((x−1)/(x+1)) ⇒zx+z =x−1 ⇒(z−1)x=−z−1 ⇒x=((1+z)/(1−z)) ⇒  the roots of P_n (x)=0 are x_k =((1+z_k )/(1−z_k )) =((1+e^((i2kπ)/n) )/(1−e^((i2kπ)/n) ))  =((1+cos(((2kπ)/n))+isin(((2kπ)/n)))/(1−cos(((2kπ)/n))−isin(((2kπ)/n)))) =((2cos^2 (((kπ)/n))+2isin(((kπ)/n))cos(((kπ)/n)))/(2sin^2 (((kπ)/n))−2isin(((kπ)/n))cos(((kπ)/n))))  =((cos(((kπ)/n))e^(i((kπ)/n)) )/(−isin(((kπ)/n))e^((ikπ)/n) )) =i cotan(((kπ)/n))  ⇒x_k =i cotan(((kπ)/n))  with k∈[[1,n−1]] and P_n (x)=aΠ_(k=1) ^(n−1) (x−icotan(((kπ)/n)))  letfind a  we have P_n (x)=Σ_(k=0) ^n  C_n ^k  x^k −Σ_(k=0) ^n  C_n ^k x^k  (−1)^(n−k)   =Σ_(k=0) ^n  { 1−(−1)^(n−k) }C_n ^k  x^k  ⇒a =2 C_n ^(n−1) =2n ⇒  P_n (x)=2nΠ_(k=1) ^(n−1) (x−i cotan(((kπ)/n)))  ⇒P_(2n+1) (x) =2(2n+1)Π_(k=1) ^(2n) (x−icotan(((kπ)/(2n+1)))) ⇒  P_(2n+1) (0) =2(2n+1)Π_(k=1) ^(2n) (−icotan(((kπ)/(2n+1))))  =2(2n+1)(−i)^(2n)  Π_(k=1) ^(2n)  cotan(((kπ)/(2n+1))) and P_n (0)=1−(−1)^n   ⇒P_(2n+1) (0) =2 ⇒(2n+1)(−1)^n  Π_(k=1) ^(2n)  cotan(((kπ)/(2n+1)))=1 ⇒  (−1)^n Π_(k=1) ^(2n)  cotan(((kπ)/(2n+1)))=(1/(2n+1))  we have  Π_(k=1) ^(2n)  cotan(((kπ)/(2n+1)))=Π_(k=1) ^n  cotan(((kπ)/(2n+1)))Π_(k=n+1) ^(2n)  cotan(((kπ)/(2n+1)))  =_(k−n=p)    Π_(k=1) ^n  cotan(((kπ)/(2n+1)))×Π_(p=1) ^n  cotan((((n+p)π)/(2n+1)))  rest to prove thst   Π_(p=1) ^n  cotan((((n+p)π)/(2n+1)))=(−1)^n Π_(p=1) ^(n ) cotan(((pπ)/(2n+1)))  ⇒(Π_(k=1) ^n  cotan(((kπ)/(2n+1))))^2  =(1/(2n+1)) ⇒Π_(k=1) ^n  cotan(((kπ)/(2n+1)))=(1/( (√(2n+1))))
1)Pn(x)=0(x+1)n=(x1)n(x1x+1)n=1letz=x1x+1(e)zn=1zn=ei2kπzk=ei2kπnandk[[0,n1]]z=x1x+1zx+z=x1(z1)x=z1x=1+z1ztherootsofPn(x)=0arexk=1+zk1zk=1+ei2kπn1ei2kπn=1+cos(2kπn)+isin(2kπn)1cos(2kπn)isin(2kπn)=2cos2(kπn)+2isin(kπn)cos(kπn)2sin2(kπn)2isin(kπn)cos(kπn)=cos(kπn)eikπnisin(kπn)eikπn=icotan(kπn)xk=icotan(kπn)withk[[1,n1]]andPn(x)=ak=1n1(xicotan(kπn))letfindawehavePn(x)=k=0nCnkxkk=0nCnkxk(1)nk=k=0n{1(1)nk}Cnkxka=2Cnn1=2nPn(x)=2nk=1n1(xicotan(kπn))P2n+1(x)=2(2n+1)k=12n(xicotan(kπ2n+1))P2n+1(0)=2(2n+1)k=12n(icotan(kπ2n+1))=2(2n+1)(i)2nk=12ncotan(kπ2n+1)andPn(0)=1(1)nP2n+1(0)=2(2n+1)(1)nk=12ncotan(kπ2n+1)=1(1)nk=12ncotan(kπ2n+1)=12n+1wehavek=12ncotan(kπ2n+1)=k=1ncotan(kπ2n+1)k=n+12ncotan(kπ2n+1)=kn=pk=1ncotan(kπ2n+1)×p=1ncotan((n+p)π2n+1)resttoprovethstp=1ncotan((n+p)π2n+1)=(1)np=1ncotan(pπ2n+1)(k=1ncotan(kπ2n+1))2=12n+1k=1ncotan(kπ2n+1)=12n+1
Commented by mind is power last updated on 06/Nov/19
nice
nice
Commented by mathmax by abdo last updated on 06/Nov/19
thanks sir.
thankssir.
Answered by mind is power last updated on 06/Nov/19
p_n (x)=0⇒((x+1)/(x−1))=e^((2ikπ)/n) ,k≤n    ⇒x(1−e^((2ikπ)/n) )=−e^((2ikπ)/n) −1  ⇒k≠0  x=((e^((2ikπ)/n) +1)/(e^((2ikπ)/n) −1))=((e^(i((kπ)/n)) (2cos(((kπ)/n))))/(e^(i((kπ)/n)) (2isin(((kπ)/n)))))=−icot(((kπ)/n))  p_n (x)=aΠ_(k=1) ^(n−1) (x+icot(((kπ)/n))  let n=2p+1  p_n (x)=Π_(k=1) ^(2p) (x+icot(((kπ)/(2p+1))))  =Π_(k=1) ^p (x+icot(((kπ)/(2p+1)))).Π_(k=p+1) ^(2p) (x+icot(((kπ)/(2p+1)))  =Π_(k=1) ^p (x+icot(((kπ)/(2p+1)))).Π_(k=0) ^(p−1) (x+icot(((2p−k)π)/(2p+1))))  =Π_(k=1) ^p (x+icot(((kπ)/(2p+1))))Π_(k=0) ^(p−1) (x−icot(((k+1)/(2p+1)))π)=(1+x)^n −(x−1)^n     pour x=0  onaΠ_(k=1) ^p (icot(((kπ)/(2p+1))))(Π_(k=1) ^p −icot(((kπ)/(2p+1))))=  ⇒{Π_(k=1) ^p cot(((kπ)/(2p+1)))}^2 =(2/a)  ⇒Π_(k=1) ^p cot(((kπ)/(2p+1)))=(√(2/a))=(1/( (√(2p+1))))  a=2C_n ^1 =2n=4p+2  cause ∀k∈[1,n] 0<  ((kπ)/(2p+1))<(π/2)⇒cot(((kπ)/(2p+1)))>0
pn(x)=0x+1x1=e2ikπn,knx(1e2ikπn)=e2ikπn1k0x=e2ikπn+1e2ikπn1=eikπn(2cos(kπn))eikπn(2isin(kπn))=icot(kπn)pn(x)=an1k=1(x+icot(kπn)letn=2p+1pn(x)=2pk=1(x+icot(kπ2p+1))=pk=1(x+icot(kπ2p+1)).2pk=p+1(x+icot(kπ2p+1)=pk=1(x+icot(kπ2p+1)).p1k=0(x+icot(2pk)π2p+1))=pk=1(x+icot(kπ2p+1))p1k=0(xicot(k+12p+1)π)=(1+x)n(x1)npourx=0onapk=1(icot(kπ2p+1))(pk=1icot(kπ2p+1))={pk=1cot(kπ2p+1)}2=2apk=1cot(kπ2p+1)=2a=12p+1a=2Cn1=2n=4p+2causek[1,n]0<kπ2p+1<π2cot(kπ2p+1)>0

Leave a Reply

Your email address will not be published. Required fields are marked *