Menu Close

Let-p-q-and-r-be-the-distinct-roots-of-the-polynomial-x-3-22x-2-80x-67-There-exist-real-number-A-B-and-C-such-that-1-s-3-22s-2-80s-67-A-s-p-B-s-q-C-s-r-for-all-real-numbers-




Question Number 135566 by bemath last updated on 14/Mar/21
Let p,q and r be the distinct roots  of the polynomial x^3 −22x^2 +80x−67.  There exist real number A,B and  C such that (1/(s^3 −22s^2 +80s−67)) =  (A/(s−p)) + (B/(s−q)) + (C/(s−r)) for all real numbers  s with s ∉ {p,q,r}.What is   (1/A) + (1/B) + (1/C) ?  (a) 243    (b) 244    (c) 245   (d)246  (e) 247
Letp,qandrbethedistinctrootsofthepolynomialx322x2+80x67.ThereexistrealnumberA,BandCsuchthat1s322s2+80s67=Asp+Bsq+Csrforallrealnumbersswiths{p,q,r}.Whatis1A+1B+1C?(a)243(b)244(c)245(d)246(e)247
Commented by EDWIN88 last updated on 14/Mar/21
very nice
verynice
Answered by EDWIN88 last updated on 14/Mar/21
⇔ 1 = A(s−q)((s−r)+B(s−p)(s−r)+C(s−p)(s−q)  (•)s=p ⇒1=A(p−q)(p−r) ; (1/A)=(p−q)(p−r)  similarly ⇒ { (((1/B)=(q−p)(q−r))),(((1/C)=(r−p)(r−q))) :}  (1/A)+(1/B)+(1/C) = p^2 +q^2 +r^2 −pq−pr−qr                          = (p+q+r)^2 −3(pq+pr+qr)                          = 22^2 −3(80)= 244
1=A(sq)((sr)+B(sp)(sr)+C(sp)(sq)()s=p1=A(pq)(pr);1A=(pq)(pr)similarly{1B=(qp)(qr)1C=(rp)(rq)1A+1B+1C=p2+q2+r2pqprqr=(p+q+r)23(pq+pr+qr)=2223(80)=244

Leave a Reply

Your email address will not be published. Required fields are marked *