Menu Close

Let-p-q-r-are-positive-real-numbers-0-lt-r-lt-min-p-q-Prove-that-p-r-q-r-min-pq-r-2-p-q-2r-




Question Number 71206 by naka3546 last updated on 13/Oct/19
Let  p,q,r  are  positive  real  numbers .  0 < r < min{p,q}.  Prove  that       (√(p−r)) + (√(q−r))  ≤  min{(√((pq)/r)) , (√(2(p+q − 2r))) }
Letp,q,rarepositiverealnumbers.0<r<min{p,q}.Provethatpr+qrmin{pqr,2(p+q2r)}
Answered by mind is power last updated on 13/Oct/19
(√(p−r ))+(√(q−r ))=≤(√(2(p+q−2r)))  (√x)+(√y)≤(√(2x+2y))  cause x+y−2(√(xy))=((√x)−(√y))^2 ≥0  ⇒x+y+2(√(xy))≤2x+2y  ⇒(√x)+(√y)≤(√(2(x+y)))  ⇒x=p−r y=q−r  (√(p−r))+(√(q−r))≤(√(2(p+q−2r)))....1  (√(p−r))+(√(q−r))≤(√((pq)/r))  (√(p−r))+(√(q−r))=(√r)(√((p/r)−1))+(√r)(√((q/r)−1))  (√(x−1))+(√(y−1))≤(√(xy  ))  x+y−2+2(√((x−1)(y−1)))≤xy  2(√((x−1)(y−1)))≤xy−x−y+2=(x−1)(y−1)+1  ⇒((√((x−1)(y−1)))−1)^2 ≥0  True  x=(p/r),y=(q/r)⇒  (√((p/r)−1))+(√((q/r)−1))≤(√((pq)/r^2 ))  ⇒(√r)((√((p/r)−1))+(√((q/r)−1)))≤(√((pq)/r))...2  2&1⇒  (√(p−r))+(√(q−r))≤min{(√((pq)/r)),(√(2(p+q−2r)))}
pr+qr=⩽2(p+q2r)x+y2x+2ycausex+y2xy=(xy)20x+y+2xy2x+2yx+y2(x+y)x=pry=qrpr+qr2(p+q2r).1pr+qrpqrpr+qr=rpr1+rqr1x1+y1xyx+y2+2(x1)(y1)xy2(x1)(y1)xyxy+2=(x1)(y1)+1((x1)(y1)1)20Truex=pr,y=qrpr1+qr1pqr2r(pr1+qr1)pqr22&1pr+qrmin{pqr,2(p+q2r)}

Leave a Reply

Your email address will not be published. Required fields are marked *