Let-p-q-r-are-positive-real-numbers-0-lt-r-lt-min-p-q-Prove-that-p-r-q-r-min-pq-r-2-p-q-2r- Tinku Tara June 3, 2023 None 0 Comments FacebookTweetPin Question Number 71206 by naka3546 last updated on 13/Oct/19 Letp,q,rarepositiverealnumbers.0<r<min{p,q}.Provethatp−r+q−r⩽min{pqr,2(p+q−2r)} Answered by mind is power last updated on 13/Oct/19 p−r+q−r=⩽2(p+q−2r)x+y⩽2x+2ycausex+y−2xy=(x−y)2⩾0⇒x+y+2xy⩽2x+2y⇒x+y⩽2(x+y)⇒x=p−ry=q−rp−r+q−r⩽2(p+q−2r)….1p−r+q−r⩽pqrp−r+q−r=rpr−1+rqr−1x−1+y−1⩽xyx+y−2+2(x−1)(y−1)⩽xy2(x−1)(y−1)⩽xy−x−y+2=(x−1)(y−1)+1⇒((x−1)(y−1)−1)2⩾0Truex=pr,y=qr⇒pr−1+qr−1⩽pqr2⇒r(pr−1+qr−1)⩽pqr…22&1⇒p−r+q−r⩽min{pqr,2(p+q−2r)} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Given-0-lt-a-lt-b-prove-that-b-a-2-8b-a-b-2-ab-b-a-2-8a-Next Next post: Question-136741 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.