Menu Close

Let-P-t-denote-a-given-cubic-polynomial-Find-the-constants-a-1-u-1-a-2-and-u-2-such-that-1-1-P-t-dt-a-1-P-u-1-a-2-P-u-2-




Question Number 1778 by 112358 last updated on 23/Sep/15
Let P(t) denote a given cubic  polynomial. Find the constants  a_1 ,u_1 ,a_2  and u_2  such that  ∫_(−1) ^( 1) P(t)dt=a_1 P(u_1 )+a_2 P(u_2 ).
LetP(t)denoteagivencubicpolynomial.Findtheconstantsa1,u1,a2andu2suchthat11P(t)dt=a1P(u1)+a2P(u2).
Answered by Rasheed Soomro last updated on 23/Sep/15
Let P(t)=at^3 +bt^2 +ct+d  LHS:        ∫P(t)dt=(a/4)t^4 +(b/3)t^3 +(c/2)t^2 +dt+C         ∫_(−1) ^( 1) P(t)dt=[(a/4)t^4 +(b/3)t^3 +(c/2)t^2 +dt+C]_(−1) ^1                   =[(a/4)+(b/3)+(c/2)+d+C]−[(a/4)−(b/3)+(c/2)−d+C]                  =((2b)/3)+2d  RHS:         a_1 P(u_1 )+a_2 P(u_2 )       =a_1 {a(u_1 )^3 +b(u_1 )^2 +c(u_1 )+d}+a_2 {a(u_2 )^3 +b(u_2 )^2 +cu_2 +d}  Comparing coefficients of b  and  d in LHS  and  RHS     (2/3)=a_1 (u_1 )^2 +a_2 (u_2 )^2     and   2=a_1 +a_2   Solving simultaneously              3(u_1 )^2  a_1 +3(u_1 )^2 a_2 =6(u_1 )^2     ............I            3(u_1 )^2 a_1 +3(u_2 )^2 a_2 =2                 ............II   Subtracting  II   from   I            3{(u_1 )^2 −(u_2 )^2 }a_2 =6(u_1 )^2 −2                   a_2 =((6(u_1 )^2 −2)/(3{(u_1 )^2 −(u_2 )^2 }))  Similarly,    a_1 =((6(u_2 )^2 −2)/(3{(u_2 )^2 −(u_1 )^2 }))  I think u_1  and u_2  should be taken as arbitrary constants.  Or otherwise if a_1  and  a_2   are taken as  arbitrary then  u_1   and  u_2   can be determined.
LetP(t)=at3+bt2+ct+dLHS:P(t)dt=a4t4+b3t3+c2t2+dt+C11P(t)dt=[a4t4+b3t3+c2t2+dt+C]11=[a4+b3+c2+d+C][a4b3+c2d+C]=2b3+2dRHS:a1P(u1)+a2P(u2)=a1{a(u1)3+b(u1)2+c(u1)+d}+a2{a(u2)3+b(u2)2+cu2+d}ComparingcoefficientsofbanddinLHSandRHS23=a1(u1)2+a2(u2)2and2=a1+a2Solvingsimultaneously3(u1)2a1+3(u1)2a2=6(u1)2I3(u1)2a1+3(u2)2a2=2IISubtractingIIfromI3{(u1)2(u2)2}a2=6(u1)22a2=6(u1)223{(u1)2(u2)2}Similarly,a1=6(u2)223{(u2)2(u1)2}Ithinku1andu2shouldbetakenasarbitraryconstants.Orotherwiseifa1anda2aretakenasarbitrarythenu1andu2canbedetermined.

Leave a Reply

Your email address will not be published. Required fields are marked *