Menu Close

let-P-x-0-i-lt-j-n-x-i-j-1-calculate-P-x-2-find-0-1-P-x-dx-




Question Number 74013 by mathmax by abdo last updated on 17/Nov/19
let   P(x)= Σ_(0≤i<j≤n)  x^(i+j)   1) calculate P^′ (x)  2) find ∫_0 ^1  P(x)dx
letP(x)=0i<jnxi+j1)calculateP(x)2)find01P(x)dx
Commented by abdomathmax last updated on 18/Nov/19
1) we have (Σ_(i=0) ^n x^i )^2 =Σ_(i=0) ^n  x^(2i)  +Σ_(0≤i<j≤n)   x^(i+j)   ⇒P(x)=(Σ_(i=0) ^(n ) x^i )^2  −Σ_(i=0) ^n  x^(2i)   case 1  x≠1 ⇒P(x)=(((1−x^(n+1) )/(1−x)))^2 −((x^(2n+2) −1)/(x^2 −1))  ⇒P^′ (x)=2(((x^(n+1) −1)/(x−1)))^′ (((x^(n+1) −1)/(x−1)))  −(((2n+2)x^(2n+1) (x^2 −1)−2x(x^(2n+2) −1))/((x^2 −1)^2 ))  =2((x^(n+1) −1)/(x−1))×(((n+1)x^n (x−1)−(x^(n+1) −1))/((x−1)^2 ))  −(((2n+2)x^(2n+3) −(2n+2)x^(2n+2) −2x^(2n+3)  +1)/((x^2 −1)^2 ))  =2((x^(n+1) −1)/((x−1)^3 ))( nx^(n+1) −(n+1)x^n +1)  −((2n x^(3n+3) −(2n+2)x^(2n+2) +1)/((x^2 −1)^2 ))  case 2  x=1 ⇒P(x)=P(1)=(n+1)^2 −(n+1)  =n^2 +2n+1−n−1 =n^2  +n
1)wehave(i=0nxi)2=i=0nx2i+0i<jnxi+jP(x)=(i=0nxi)2i=0nx2icase1x1P(x)=(1xn+11x)2x2n+21x21P(x)=2(xn+11x1)(xn+11x1)(2n+2)x2n+1(x21)2x(x2n+21)(x21)2=2xn+11x1×(n+1)xn(x1)(xn+11)(x1)2(2n+2)x2n+3(2n+2)x2n+22x2n+3+1(x21)2=2xn+11(x1)3(nxn+1(n+1)xn+1)2nx3n+3(2n+2)x2n+2+1(x21)2case2x=1P(x)=P(1)=(n+1)2(n+1)=n2+2n+1n1=n2+n
Commented by abdomathmax last updated on 18/Nov/19
error of typo for x≠1  P^′ (x)=(((2x^(n+1) −2)(nx^(n+1) −(n+1)x^n +1))/((x−1)^3 ))  −((2nx^(2n+3)  −(2n+2)x^(2n+2) +1)/((x^2 −1)^2 ))
erroroftypoforx1P(x)=(2xn+12)(nxn+1(n+1)xn+1)(x1)32nx2n+3(2n+2)x2n+2+1(x21)2
Commented by abdomathmax last updated on 18/Nov/19
2) ∫_0 ^1 P(x)dx =Σ_(0≤i<j≤n)     ∫_0 ^1  x^(i+j) dx  =Σ_(0≤i<j≤n)    (1/(i+j+1))  =Σ_(j=1) ^n (Σ_(i=0) ^(j−1)   (1/(i+j+1))) changement of indice  i+j+1=k give   ∫_0 ^1  P(x)dx =Σ_(j=1) ^n (Σ_(k=j+1) ^(2j)  (1/k))  =Σ_(j=1) ^n (Σ_(k=1) ^j (1/k) +Σ_(k=j+1) ^(2j)  (1/k)  −Σ_(k=1) ^j  (1/k))  =Σ_(j=1) ^n ( H_(2j) −H_j ) =Σ_(j=1) ^n  H_(2j) −Σ_(n=1) ^n  H_j
2)01P(x)dx=0i<jn01xi+jdx=0i<jn1i+j+1=j=1n(i=0j11i+j+1)changementofindicei+j+1=kgive01P(x)dx=j=1n(k=j+12j1k)=j=1n(k=1j1k+k=j+12j1kk=1j1k)=j=1n(H2jHj)=j=1nH2jn=1nHj
Answered by mind is power last updated on 18/Nov/19
let Q(x)=(Σ_(i=0) ^n x^i )  Q(x)^2 =2p(x)+Σ_(i=1) ^n x^(2i) =2p(x)  Q(x)=(((1−x^(n+1) )/(1−x)))^2 ,∀x∈C−{1}  ⇒p(x)=(1/2)[(((1−x^(n+1) )/(1−x)))^2 −((1−x^(2n+2) )/(1−x^2 ))],∀x∈C−{1,−1}  =p(x)=(1/2)[(((x^(2n+2) +1−2x^(n+1) )(1+x)−(1−x^(2n+2) )(1−x))/((1−x^2 )(1−x)))]  ⇒p(x)=(1/2)[((x^(2n+3) +x−2x^(n+2) +x^(2n+2) +1−2x^(n+1) −1+x+x^(2n+2) −x^(2n+3) )/((1−x^2 )(1−x)))]  ⇒p(x)=(1/2)[((2x^(2n+2) −2x^(n+2) −2x^(n+1) +2x)/((1−x^2 )(1−x)))]  p(x)=((x^(2n+2) −x^(n+2) −x^(n+1) +x)/((1−x^2 )(1−x)))  p′(x)=Σ_(1≤i<j≤n) (i+j)x^(i+j−1) =p′(x),x∈C−{1,−1}  if x=1⇒p′(x)=Σ_(1≤i<j≤n) (i+j)  =Σ_(2≤j≤n) Σ_(i=1) ^(j−1) (i+j)  =Σ_(2≤j≤n) .{(((1+j+2j−1))/2).(j−1)  =Σ_(2≤j≤n) (3/2)(j^2 −j)=(3/2).Σ_(2≤j≤n)  j^2 −(3/2).((n−1)/2).(((n+2))/)  =(3/2)[{.((n(n+1)(2n+1))/6)−(1/6)}−(((n−1)(n+2))/2)  2)∫_0 ^1 P(x)=Σ_(0≤i<j≤n) (1/(i+j+1))  =Σ_(j=1) ^n .Σ_(i=0) ^(j−1) .(1/(i+j+1))  =Σ_(j=1) ^n .Σ_(i=0) ^(j−1) .((1/(i+j+1))+Σ_(k=1) ^(j+i) (1/k)−Σ_(k=1) ^(j+i) (1/k))  =Σ_(j=1) ^n .Σ_(i=0) ^(j−1) {H_(2j) −H_(j+i) }  =Σ_(j=1) ^n jH_(2j) −Σ_(j=1) ^n Σ_(i=0) ^(j−1) H_(i+j)
letQ(x)=(ni=0xi)Q(x)2=2p(x)+ni=1x2i=2p(x)Q(x)=(1xn+11x)2,xC{1}p(x)=12[(1xn+11x)21x2n+21x2],xC{1,1}=p(x)=12[(x2n+2+12xn+1)(1+x)(1x2n+2)(1x)(1x2)(1x)]p(x)=12[x2n+3+x2xn+2+x2n+2+12xn+11+x+x2n+2x2n+3(1x2)(1x)]p(x)=12[2x2n+22xn+22xn+1+2x(1x2)(1x)]p(x)=x2n+2xn+2xn+1+x(1x2)(1x)p(x)=1i<jn(i+j)xi+j1=p(x),xC{1,1}ifx=1p(x)=1i<jn(i+j)=2jnj1i=1(i+j)=2jn.{(1+j+2j1)2.(j1)=2jn32(j2j)=32.2jnj232.n12.(n+2)=32[{.n(n+1)(2n+1)616}(n1)(n+2)22)01P(x)=0i<jn1i+j+1=nj=1.j1i=0.1i+j+1=nj=1.j1i=0.(1i+j+1+j+ik=11kj+ik=11k)=nj=1.j1i=0{H2jHj+i}=nj=1jH2jnj=1j1i=0Hi+j
Commented by abdomathmax last updated on 18/Nov/19
thank you sir ...
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *