Question Number 74013 by mathmax by abdo last updated on 17/Nov/19

Commented by abdomathmax last updated on 18/Nov/19

Commented by abdomathmax last updated on 18/Nov/19

Commented by abdomathmax last updated on 18/Nov/19

Answered by mind is power last updated on 18/Nov/19
![let Q(x)=(Σ_(i=0) ^n x^i ) Q(x)^2 =2p(x)+Σ_(i=1) ^n x^(2i) =2p(x) Q(x)=(((1−x^(n+1) )/(1−x)))^2 ,∀x∈C−{1} ⇒p(x)=(1/2)[(((1−x^(n+1) )/(1−x)))^2 −((1−x^(2n+2) )/(1−x^2 ))],∀x∈C−{1,−1} =p(x)=(1/2)[(((x^(2n+2) +1−2x^(n+1) )(1+x)−(1−x^(2n+2) )(1−x))/((1−x^2 )(1−x)))] ⇒p(x)=(1/2)[((x^(2n+3) +x−2x^(n+2) +x^(2n+2) +1−2x^(n+1) −1+x+x^(2n+2) −x^(2n+3) )/((1−x^2 )(1−x)))] ⇒p(x)=(1/2)[((2x^(2n+2) −2x^(n+2) −2x^(n+1) +2x)/((1−x^2 )(1−x)))] p(x)=((x^(2n+2) −x^(n+2) −x^(n+1) +x)/((1−x^2 )(1−x))) p′(x)=Σ_(1≤i<j≤n) (i+j)x^(i+j−1) =p′(x),x∈C−{1,−1} if x=1⇒p′(x)=Σ_(1≤i<j≤n) (i+j) =Σ_(2≤j≤n) Σ_(i=1) ^(j−1) (i+j) =Σ_(2≤j≤n) .{(((1+j+2j−1))/2).(j−1) =Σ_(2≤j≤n) (3/2)(j^2 −j)=(3/2).Σ_(2≤j≤n) j^2 −(3/2).((n−1)/2).(((n+2))/) =(3/2)[{.((n(n+1)(2n+1))/6)−(1/6)}−(((n−1)(n+2))/2) 2)∫_0 ^1 P(x)=Σ_(0≤i<j≤n) (1/(i+j+1)) =Σ_(j=1) ^n .Σ_(i=0) ^(j−1) .(1/(i+j+1)) =Σ_(j=1) ^n .Σ_(i=0) ^(j−1) .((1/(i+j+1))+Σ_(k=1) ^(j+i) (1/k)−Σ_(k=1) ^(j+i) (1/k)) =Σ_(j=1) ^n .Σ_(i=0) ^(j−1) {H_(2j) −H_(j+i) } =Σ_(j=1) ^n jH_(2j) −Σ_(j=1) ^n Σ_(i=0) ^(j−1) H_(i+j)](https://www.tinkutara.com/question/Q74050.png)
Commented by abdomathmax last updated on 18/Nov/19
