Menu Close

let-P-x-1-ix-n-1-ix-n-with-n-integr-decompose-the-Fraction-F-x-1-P-x-




Question Number 73486 by abdomathmax last updated on 13/Nov/19
let P(x)=(1+ix)^n −(1−ix)^n  with n integr  decompose the Fraction F (x)=(1/(P(x)))
letP(x)=(1+ix)n(1ix)nwithnintegrdecomposetheFractionF(x)=1P(x)
Commented by abdomathmax last updated on 17/Nov/19
P(x)=0 ⇔(((1−ix)^n )/((1+ix)^n )) =1 ⇔(((1+ix)/(1−ix)))^n =1  let z =((1+ix)/(1−ix))   (e) ⇒z^n =1 ⇒z_k =e^((i2kπ)/n)   k∈[[0,n−1]]    we have z−izx=1+ix ⇒  z−1=ix+izx =i(z+1)x ⇒x=(1/i)((z−1)/(1+z))  =−i((z−1)/(z+1)) =i((1−z)/(1+z))  so the roots of P are  x_k =i((1−z_k )/(1+z_k )) =i((1−e^(i((2kπ)/n)) )/(1+e^(i((2kπ)/n)) )) =i((1−cos(((2kπ)/n))−isin(((2kπ)/n)))/(1+cos(((2kπ)/n))+isin(((2kπ)/n))))  =i((2sin^2 (((kπ)/n))−2i sin(((kπ)/n))cos(((kπ)/n)))/(2cos^2 (((kπ)/n))+2isin(((kπ)/n))cos(((kπ)/n))))  =i((−isin(((kπ)/n))e^((ikπ)/n) )/(cos(((kπ)/n))e^((ikπ)/n) )) =tan(((kπ)/n)) ⇒x_k =tan(((kπ)/n))  k ∈[[0,n−1]] ⇒P(x)=a Π_(k=0) ^(n−1) (x−tan(((kπ)/n))}  a?    we have P(x)=(1+ix)^n −(1−ix)^n   =Σ_(k=0) ^n  C_n ^k (ix)^k −Σ_(k=0) ^n  C_n ^k (−ix)^k   =Σ_(k=0) ^n C_n ^k { (i)^k −(−i)^k }x^k   =Σ_(p=0) ^([((n−1)/2)]) 2i(−1)^p  C_n ^(2p+1)  x^(2p+1)   ⇒a =2i(−1)^([((n−1)/2)])   C_n ^(2[((n−1)/2)]+1)  ⇒  P(x)=2i(−1)^([((n−1)/2)])  C_n ^(2[((n−1)/2)]+1) Π_(k=0) ^(n−1) (x−tan(((kπ)/n)))  F(x)=(1/(P(x)))=(1/(aΠ_(k=0) ^(n−1) (x−x_k ))) =Σ_(k=0) ^(n−1) (λ_k /(x−x_k ))  λ_k =(1/(P^′ (x_k )))  but we have  P(x)=(1+ix)^n −(1−ix)^n   ⇒P^( ′) (x)=ni(1+ix)^(n−1) +ni(1−ix)^(n−1)   =ni{ (1+ix)^(n−1) −(1−ix)^(n−1) }  =ni (2i)Im( (1+ix)^(n−1) }  1+ix =(√(1+x^2 )) e^(i arctanx)  ⇒(1+ix)^(n−1) =(1+x^2 )^((n−1)/2) e^(i(n−1)arctan(x))   ⇒Im((1+ix)^(n−1) ) =(1+x^2 )^((n−1)/2) sin((n−1)arctan(x))⇒  P^′ (x)=−2n (1+x^2 )^((n−1)/2)  sin((n−1)arctan(x)) ⇒  P^′ (x_k )=−2n(1+ tan^2 (((kπ)/n)))^((n−1)/2) sin((n−1)(((kπ)/n)))  =−2n((1/(cos^2 (((kπ)/n)))))^((n−1)/2) sin{kπ−((kπ)/n)}  =((−2n)/((cos(((kπ)/n)))^(n−1) )){−(−1)^k  sin(((kπ)/n))  =((2n(−1)^k  sin(((kπ)/n)))/({cos(((kπ)/n))}^(n−1) )) =(1/λ_k )
P(x)=0(1ix)n(1+ix)n=1(1+ix1ix)n=1letz=1+ix1ix(e)zn=1zk=ei2kπnk[[0,n1]]wehavezizx=1+ixz1=ix+izx=i(z+1)xx=1iz11+z=iz1z+1=i1z1+zsotherootsofParexk=i1zk1+zk=i1ei2kπn1+ei2kπn=i1cos(2kπn)isin(2kπn)1+cos(2kπn)+isin(2kπn)=i2sin2(kπn)2isin(kπn)cos(kπn)2cos2(kπn)+2isin(kπn)cos(kπn)=iisin(kπn)eikπncos(kπn)eikπn=tan(kπn)xk=tan(kπn)k[[0,n1]]P(x)=ak=0n1(xtan(kπn)}a?wehaveP(x)=(1+ix)n(1ix)n=k=0nCnk(ix)kk=0nCnk(ix)k=k=0nCnk{(i)k(i)k}xk=p=0[n12]2i(1)pCn2p+1x2p+1a=2i(1)[n12]Cn2[n12]+1P(x)=2i(1)[n12]Cn2[n12]+1k=0n1(xtan(kπn))F(x)=1P(x)=1ak=0n1(xxk)=k=0n1λkxxkλk=1P(xk)butwehaveP(x)=(1+ix)n(1ix)nP(x)=ni(1+ix)n1+ni(1ix)n1=ni{(1+ix)n1(1ix)n1}=ni(2i)Im((1+ix)n1}1+ix=1+x2eiarctanx(1+ix)n1=(1+x2)n12ei(n1)arctan(x)Im((1+ix)n1)=(1+x2)n12sin((n1)arctan(x))P(x)=2n(1+x2)n12sin((n1)arctan(x))P(xk)=2n(1+tan2(kπn))n12sin((n1)(kπn))=2n(1cos2(kπn))n12sin{kπkπn}=2n(cos(kπn))n1{(1)ksin(kπn)=2n(1)ksin(kπn){cos(kπn)}n1=1λk
Commented by mathmax by abdo last updated on 17/Nov/19
forgive P^′ (x)=−2n Re((1+ix)^(n−1) )  =−2n(1+x^2 )^((n−1)/2)  cos{(n−1)arctanx} ⇒  P^′ (x_k )=−2n(1+x_k ^2 )^((n−1)/2)  cos{(n−1)arctan(x_k )}  =−2n (1+tan^2 (((kπ)/n)))^((n−1)/2)  cos{(n−1)((kπ)/n)}  =−2n ((1/(cos^2 (((kπ)/n)))))^((n−1)/2)  cos{kπ−((kπ)/n)}  =−((2n)/((cos(((kπ)/n)))^(n−1) ))(−1)^k cos(((kπ)/n)) =((2n(−1)^(k+1) )/((cos(((kπ)/n)))^(n−2) )) =(1/λ_k ) ⇒  λ_k =(((−1)^(k+1) (cos(((kπ)/n)))^(n−2) )/(2n)) ⇒  P(x)=(1/(2n))Σ_(k=0) ^(n−1)     (((−1)^(k+1) (cos(((kπ)/n)))^(n−2) )/(x−tan(((kπ)/n))))    ( n >1)
forgiveP(x)=2nRe((1+ix)n1)=2n(1+x2)n12cos{(n1)arctanx}P(xk)=2n(1+xk2)n12cos{(n1)arctan(xk)}=2n(1+tan2(kπn))n12cos{(n1)kπn}=2n(1cos2(kπn))n12cos{kπkπn}=2n(cos(kπn))n1(1)kcos(kπn)=2n(1)k+1(cos(kπn))n2=1λkλk=(1)k+1(cos(kπn))n22nP(x)=12nk=0n1(1)k+1(cos(kπn))n2xtan(kπn)(n>1)

Leave a Reply

Your email address will not be published. Required fields are marked *