let-P-x-1-ix-n-1-ix-n-with-n-integr-decompose-the-Fraction-F-x-1-P-x- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 73486 by abdomathmax last updated on 13/Nov/19 letP(x)=(1+ix)n−(1−ix)nwithnintegrdecomposetheFractionF(x)=1P(x) Commented by abdomathmax last updated on 17/Nov/19 P(x)=0⇔(1−ix)n(1+ix)n=1⇔(1+ix1−ix)n=1letz=1+ix1−ix(e)⇒zn=1⇒zk=ei2kπnk∈[[0,n−1]]wehavez−izx=1+ix⇒z−1=ix+izx=i(z+1)x⇒x=1iz−11+z=−iz−1z+1=i1−z1+zsotherootsofParexk=i1−zk1+zk=i1−ei2kπn1+ei2kπn=i1−cos(2kπn)−isin(2kπn)1+cos(2kπn)+isin(2kπn)=i2sin2(kπn)−2isin(kπn)cos(kπn)2cos2(kπn)+2isin(kπn)cos(kπn)=i−isin(kπn)eikπncos(kπn)eikπn=tan(kπn)⇒xk=tan(kπn)k∈[[0,n−1]]⇒P(x)=a∏k=0n−1(x−tan(kπn)}a?wehaveP(x)=(1+ix)n−(1−ix)n=∑k=0nCnk(ix)k−∑k=0nCnk(−ix)k=∑k=0nCnk{(i)k−(−i)k}xk=∑p=0[n−12]2i(−1)pCn2p+1x2p+1⇒a=2i(−1)[n−12]Cn2[n−12]+1⇒P(x)=2i(−1)[n−12]Cn2[n−12]+1∏k=0n−1(x−tan(kπn))F(x)=1P(x)=1a∏k=0n−1(x−xk)=∑k=0n−1λkx−xkλk=1P′(xk)butwehaveP(x)=(1+ix)n−(1−ix)n⇒P′(x)=ni(1+ix)n−1+ni(1−ix)n−1=ni{(1+ix)n−1−(1−ix)n−1}=ni(2i)Im((1+ix)n−1}1+ix=1+x2eiarctanx⇒(1+ix)n−1=(1+x2)n−12ei(n−1)arctan(x)⇒Im((1+ix)n−1)=(1+x2)n−12sin((n−1)arctan(x))⇒P′(x)=−2n(1+x2)n−12sin((n−1)arctan(x))⇒P′(xk)=−2n(1+tan2(kπn))n−12sin((n−1)(kπn))=−2n(1cos2(kπn))n−12sin{kπ−kπn}=−2n(cos(kπn))n−1{−(−1)ksin(kπn)=2n(−1)ksin(kπn){cos(kπn)}n−1=1λk Commented by mathmax by abdo last updated on 17/Nov/19 forgiveP′(x)=−2nRe((1+ix)n−1)=−2n(1+x2)n−12cos{(n−1)arctanx}⇒P′(xk)=−2n(1+xk2)n−12cos{(n−1)arctan(xk)}=−2n(1+tan2(kπn))n−12cos{(n−1)kπn}=−2n(1cos2(kπn))n−12cos{kπ−kπn}=−2n(cos(kπn))n−1(−1)kcos(kπn)=2n(−1)k+1(cos(kπn))n−2=1λk⇒λk=(−1)k+1(cos(kπn))n−22n⇒P(x)=12n∑k=0n−1(−1)k+1(cos(kπn))n−2x−tan(kπn)(n>1) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-Re-z-and-Im-z-of-z-2i-3-2-Next Next post: solve-xy-x-2-1-y-x-e-x-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.