Menu Close

let-p-x-1-jx-n-1-jx-n-with-j-e-i2pi-3-1-determine-the-roots-of-p-x-and-factorize-P-x-inside-C-x-2-decompose-the-fraction-F-x-1-p-x-




Question Number 74225 by mathmax by abdo last updated on 20/Nov/19
let p(x)=(1+jx)^n −(1−jx)^n   with j=e^((i2π)/3)   1) determine the roots of p(x) and factorize P(x) inside C[x]  2) decompose the fraction F(x)=(1/(p(x)))
letp(x)=(1+jx)n(1jx)nwithj=ei2π31)determinetherootsofp(x)andfactorizeP(x)insideC[x]2)decomposethefractionF(x)=1p(x)
Answered by mind is power last updated on 20/Nov/19
p(x)=0⇒(1+jx)^n −(1−jx)^n =0  ⇔(((1+jx)/(1−jx)))^n =1 &x#(1/j)  ((1+jx)/(1−jx))=e^((2ikπ)/n) ,x≠(1/j)    k<n  ⇔x=((e^((2ikπ)/n) −1)/(j(e^((2ikπ)/n) +1)))=(1/j)   ((e^(i((kπ)/n)) −e^((−ikπ)/n) )/(e^(ik(π/n)) +e^(−((ikπ)/n)) ))=((i tan(((kπ)/n)))/j)  x=(i/j).tan(((kπ)/(2n)))   k∈[0,n−1] withe  (k/n)≠2  if n=2s⇒k∈[1,2s−1]−{s}  if n=2s+1⇒k∈[1,2s−1]  p(x)=(1+jx)^n −(1−jx)^n   p(x)=(jx)^n −(−jx)^n +n(jx)^(n−1) −n(−jx)^(n−1) ........  p(x)=(j^n +(−1)^(n+1) j^j )x^n +n(j^(n−1) +(−1)^n j^(n−1) )x^(n−1)   if n=2s p is polynom degp=2s−1  if n=2s+1  degp=2s+1  n=2s  p(x)=  n(2j^(n−1) )Π_(k=0,k≠(n/2)) ^(n−1) (X−((itan(((kπ)/n)))/j))  if n=2s+1  p(x)=(2j^n )Π_(k=0) ^(n−1) (X−((itan(((kπ)/n)))/j))  2)(1/(p(x)))  we do it for n=2k+1  (1/(p(x)))=Σ_(k=0) ^(n−1) (a_k /((X−((itan(((kπ)/n)))/j))))  a_k =(1/(2j^n Π_(t=0,t#k) ^(n−1) (((i(tan(((tπ)/n))−tan(((kπ)/n)))/j))))    (1/(p(x)))=Σ_(k=0) ^(n−1) (1/(2j^n Π_(t=0,t#k) ^(n−1) (((i(tan(((tπ)/n))−tan(((kπ)/n)))/j)))).(1/((X−((itan(((kπ)/n)))/j))))    .
p(x)=0(1+jx)n(1jx)n=0You can't use 'macro parameter character #' in math mode1+jx1jx=e2ikπn,x1jk<nx=e2ikπn1j(e2ikπn+1)=1jeikπneikπneikπn+eikπn=itan(kπn)jx=ij.tan(kπ2n)k[0,n1]withekn2ifn=2sk[1,2s1]{s}ifn=2s+1k[1,2s1]p(x)=(1+jx)n(1jx)np(x)=(jx)n(jx)n+n(jx)n1n(jx)n1..p(x)=(jn+(1)n+1jj)xn+n(jn1+(1)njn1)xn1ifn=2spispolynomdegp=2s1ifn=2s+1degp=2s+1n=2sp(x)=n(2jn1)n1k=0,kn2(Xitan(kπn)j)ifn=2s+1p(x)=(2jn)n1k=0(Xitan(kπn)j)2)1p(x)wedoitforn=2k+11p(x)=n1k=0ak(Xitan(kπn)j)You can't use 'macro parameter character #' in math modeYou can't use 'macro parameter character #' in math mode.
Commented by mathmax by abdo last updated on 21/Nov/19
thankx sir.
thankxsir.

Leave a Reply

Your email address will not be published. Required fields are marked *