Question Number 74225 by mathmax by abdo last updated on 20/Nov/19
$${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{jx}\right)^{{n}} −\left(\mathrm{1}−{jx}\right)^{{n}} \:\:{with}\:{j}={e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{the}\:{roots}\:{of}\:{p}\left({x}\right)\:{and}\:{factorize}\:{P}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{2}\right)\:{decompose}\:{the}\:{fraction}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{p}\left({x}\right)} \\ $$
Answered by mind is power last updated on 20/Nov/19
$${p}\left({x}\right)=\mathrm{0}\Rightarrow\left(\mathrm{1}+{jx}\right)^{{n}} −\left(\mathrm{1}−{jx}\right)^{{n}} =\mathrm{0} \\ $$$$\Leftrightarrow\left(\frac{\mathrm{1}+{jx}}{\mathrm{1}−{jx}}\right)^{{n}} =\mathrm{1}\:\&{x}#\frac{\mathrm{1}}{{j}} \\ $$$$\frac{\mathrm{1}+{jx}}{\mathrm{1}−{jx}}={e}^{\frac{\mathrm{2}{ik}\pi}{{n}}} ,{x}\neq\frac{\mathrm{1}}{{j}}\:\:\:\:{k}<{n} \\ $$$$\Leftrightarrow{x}=\frac{{e}^{\frac{\mathrm{2}{ik}\pi}{{n}}} −\mathrm{1}}{{j}\left({e}^{\frac{\mathrm{2}{ik}\pi}{{n}}} +\mathrm{1}\right)}=\frac{\mathrm{1}}{{j}}\:\:\:\frac{{e}^{{i}\frac{{k}\pi}{{n}}} −{e}^{\frac{−{ik}\pi}{{n}}} }{{e}^{{ik}\frac{\pi}{{n}}} +{e}^{−\frac{{ik}\pi}{{n}}} }=\frac{{i}\:{tan}\left(\frac{{k}\pi}{{n}}\right)}{{j}} \\ $$$${x}=\frac{{i}}{{j}}.{tan}\left(\frac{{k}\pi}{\mathrm{2}{n}}\right)\:\:\:{k}\in\left[\mathrm{0},{n}−\mathrm{1}\right]\:{withe}\:\:\frac{{k}}{{n}}\neq\mathrm{2} \\ $$$${if}\:{n}=\mathrm{2}{s}\Rightarrow{k}\in\left[\mathrm{1},\mathrm{2}{s}−\mathrm{1}\right]−\left\{{s}\right\} \\ $$$${if}\:{n}=\mathrm{2}{s}+\mathrm{1}\Rightarrow{k}\in\left[\mathrm{1},\mathrm{2}{s}−\mathrm{1}\right] \\ $$$${p}\left({x}\right)=\left(\mathrm{1}+{jx}\right)^{{n}} −\left(\mathrm{1}−{jx}\right)^{{n}} \\ $$$${p}\left({x}\right)=\left({jx}\right)^{{n}} −\left(−{jx}\right)^{{n}} +{n}\left({jx}\right)^{{n}−\mathrm{1}} −{n}\left(−{jx}\right)^{{n}−\mathrm{1}} …….. \\ $$$${p}\left({x}\right)=\left({j}^{{n}} +\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {j}^{{j}} \right){x}^{{n}} +{n}\left({j}^{{n}−\mathrm{1}} +\left(−\mathrm{1}\right)^{{n}} {j}^{{n}−\mathrm{1}} \right){x}^{{n}−\mathrm{1}} \\ $$$${if}\:{n}=\mathrm{2}{s}\:{p}\:{is}\:{polynom}\:{degp}=\mathrm{2}{s}−\mathrm{1} \\ $$$${if}\:{n}=\mathrm{2}{s}+\mathrm{1}\:\:{degp}=\mathrm{2}{s}+\mathrm{1} \\ $$$${n}=\mathrm{2}{s} \\ $$$${p}\left({x}\right)=\:\:{n}\left(\mathrm{2}{j}^{{n}−\mathrm{1}} \right)\underset{{k}=\mathrm{0},{k}\neq\frac{{n}}{\mathrm{2}}} {\overset{{n}−\mathrm{1}} {\prod}}\left({X}−\frac{{itan}\left(\frac{{k}\pi}{{n}}\right)}{{j}}\right) \\ $$$${if}\:{n}=\mathrm{2}{s}+\mathrm{1} \\ $$$${p}\left({x}\right)=\left(\mathrm{2}{j}^{{n}} \right)\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({X}−\frac{{itan}\left(\frac{{k}\pi}{{n}}\right)}{{j}}\right) \\ $$$$\left.\mathrm{2}\right)\frac{\mathrm{1}}{{p}\left({x}\right)} \\ $$$${we}\:{do}\:{it}\:{for}\:{n}=\mathrm{2}{k}+\mathrm{1} \\ $$$$\frac{\mathrm{1}}{{p}\left({x}\right)}=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{{a}_{{k}} }{\left({X}−\frac{{itan}\left(\frac{{k}\pi}{{n}}\right)}{{j}}\right)} \\ $$$${a}_{{k}} =\frac{\mathrm{1}}{\mathrm{2}{j}^{{n}} \underset{{t}=\mathrm{0},{t}#{k}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\frac{{i}\left({tan}\left(\frac{{t}\pi}{{n}}\right)−{tan}\left(\frac{{k}\pi}{{n}}\right)\right.}{{j}}\right)} \\ $$$$ \\ $$$$\frac{\mathrm{1}}{{p}\left({x}\right)}=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{j}^{{n}} \underset{{t}=\mathrm{0},{t}#{k}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\frac{{i}\left({tan}\left(\frac{{t}\pi}{{n}}\right)−{tan}\left(\frac{{k}\pi}{{n}}\right)\right.}{{j}}\right)}.\frac{\mathrm{1}}{\left({X}−\frac{{itan}\left(\frac{{k}\pi}{{n}}\right)}{{j}}\right)} \\ $$$$ \\ $$$$. \\ $$
Commented by mathmax by abdo last updated on 21/Nov/19
$${thankx}\:{sir}. \\ $$