Menu Close

let-P-x-1-n-x-2-1-n-calculate-P-n-x-and-P-n-0-




Question Number 74501 by mathmax by abdo last updated on 25/Nov/19
 let P(x)=(1/(n!))(x^2 −1)^n   calculate P^((n)) (x)  and P^( (n)) (0)
letP(x)=1n!(x21)ncalculateP(n)(x)andP(n)(0)
Commented by mathmax by abdo last updated on 28/Nov/19
we have P(x)=(1/(n!))Σ_(k=0) ^n  C_n ^k  x^(2k) (−1)^(n+k)   =(((−1)^n )/(n!)) Σ_(k=0) ^n  (−1)^k  C_n ^k  x^(2k)  ⇒P^((n)) (x)= (((−1)^n )/(n!))+(((−1)^n )/(n!))Σ_(k=1) ^n  (−1)^k  C_n ^k  (x^(2k) )^()n))   (x^(2k) )^((1)) =(2k)x^(2k−1)  ,(x^(2k) )^((2)) =(2k)(2k−1) x^(2k−2)  ....  (x^(2k) )^((n)) =(2k)(2k−1)....(2k−n+1)x^(2k−1)   =(((2k)!)/((2k−n)!)) x^(2k−1)  ⇒  P^((n)) (x)=(((−1)^n )/(n!))+(((−1)^n )/(n!)) Σ_(k=1) ^n (−1)^k  C_n ^k   (((2k)!)/((2k−n)!)) x^(2k−1)
wehaveP(x)=1n!k=0nCnkx2k(1)n+k=(1)nn!k=0n(1)kCnkx2kP(n)(x)=(1)nn!+(1)nn!k=1n(1)kCnk(x2k))n)(x2k)(1)=(2k)x2k1,(x2k)(2)=(2k)(2k1)x2k2.(x2k)(n)=(2k)(2k1).(2kn+1)x2k1=(2k)!(2kn)!x2k1P(n)(x)=(1)nn!+(1)nn!k=1n(1)kCnk(2k)!(2kn)!x2k1

Leave a Reply

Your email address will not be published. Required fields are marked *