Menu Close

Let-P-x-be-polynomial-in-x-with-integral-coefficients-If-n-is-a-solution-of-P-x-0-mod-n-and-a-b-mod-n-prove-that-b-is-also-a-solution-




Question Number 76229 by arkanmath7@gmail.com last updated on 25/Dec/19
Let P(x) be polynomial in x with integral  coefficients. If n is a solution of   P(x)≡0(mod n) , and a≡b(mod n),  prove that b is also a solution.
$${Let}\:{P}\left({x}\right)\:{be}\:{polynomial}\:{in}\:{x}\:{with}\:{integral} \\ $$$${coefficients}.\:{If}\:{n}\:{is}\:{a}\:{solution}\:{of}\: \\ $$$${P}\left({x}\right)\equiv\mathrm{0}\left({mod}\:{n}\right)\:,\:{and}\:{a}\equiv{b}\left({mod}\:{n}\right), \\ $$$${prove}\:{that}\:{b}\:{is}\:{also}\:{a}\:{solution}. \\ $$
Answered by Rio Michael last updated on 25/Dec/19
generally if a≡b(mod n) then n∣(a−b)  if n∣(a−b) and n∣p(x) from p(x)≡ 0(modn)  then (a−b) is also a solution  now if  a≡b(mod n) then b≡a(mod n)  which means a≡b(mod n) hence a and b  are solutions to p(x)≡0(mod n)  hence b is a solution.
$${generally}\:{if}\:{a}\equiv{b}\left({mod}\:{n}\right)\:{then}\:{n}\mid\left({a}−{b}\right) \\ $$$${if}\:{n}\mid\left({a}−{b}\right)\:{and}\:{n}\mid{p}\left({x}\right)\:{from}\:{p}\left({x}\right)\equiv\:\mathrm{0}\left({modn}\right) \\ $$$${then}\:\left({a}−{b}\right)\:{is}\:{also}\:{a}\:{solution} \\ $$$${now}\:{if}\:\:{a}\equiv{b}\left({mod}\:{n}\right)\:{then}\:{b}\equiv{a}\left({mod}\:{n}\right) \\ $$$${which}\:{means}\:{a}\equiv{b}\left({mod}\:{n}\right)\:{hence}\:{a}\:{and}\:{b} \\ $$$${are}\:{solutions}\:{to}\:{p}\left({x}\right)\equiv\mathrm{0}\left({mod}\:{n}\right) \\ $$$${hence}\:{b}\:{is}\:{a}\:{solution}. \\ $$
Commented by arkanmath7@gmail.com last updated on 25/Dec/19
thnx sir
$${thnx}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *