Menu Close

let-p-x-x-1-6-e-i-with-real-1-find-the-roots-of-p-x-2-factorize-p-x-inside-C-x-3-factorize-p-x-inside-R-x-




Question Number 69794 by mathmax by abdo last updated on 27/Sep/19
let p(x)=(x+1)^6  −e^(iα)     with α real  1) find the roots of p(x)  2) factorize p(x)inside C[x]  3)factorize p(x)inside R[x]
letp(x)=(x+1)6eiαwithαreal1)findtherootsofp(x)2)factorizep(x)insideC[x]3)factorizep(x)insideR[x]
Commented by mathmax by abdo last updated on 01/Oct/19
1)p(x)=0 ⇔(x+1)^6 =e^(iα)  ⇔(((x+1)^6 )/e^(iα) ) =1 ⇔(((x+1)^6 )/((e^((iα)/6) )^6 )) =1 ⇒  ((x+1)e^(−((iα)/6)) )^6  =e^(i2kπ)  ⇒(x+1)e^(−((iα)/6))  =e^((i2kπ)/6)  ⇒  (x+1)=e^((ikπ)/3)  e^((iα)/6)  ⇒x+1 =e^((i(2kπ +α))/6)  ⇒x=e^(i(((2kπ+α))/6)) −1  so the roots of p(x) are z_k =e^(i(((2kπ+α)/6))) −1  with k∈[[0,5]]  2) p(x) =aΠ_(k=0) ^5 (x−z_k )   we see that a=1 ⇒  p(x) =Π_(k=0) ^5 (x+1−e^(i(((3kπ+α)/6))) )
1)p(x)=0(x+1)6=eiα(x+1)6eiα=1(x+1)6(eiα6)6=1((x+1)eiα6)6=ei2kπ(x+1)eiα6=ei2kπ6(x+1)=eikπ3eiα6x+1=ei(2kπ+α)6x=ei(2kπ+α)61sotherootsofp(x)arezk=ei(2kπ+α6)1withk[[0,5]]2)p(x)=ak=05(xzk)weseethata=1p(x)=k=05(x+1ei(3kπ+α6))
Commented by mathmax by abdo last updated on 01/Oct/19
error of typo    p(x)=Π_(k=0) ^5 (x+1−e^(i(((2kπ+α)/6))) )
erroroftypop(x)=k=05(x+1ei(2kπ+α6))
Answered by mind is power last updated on 29/Sep/19
p(x)=0⇒  (x+1)^6 =e^(ia) ⇔(x+1)^6 =e^(i(a+2kπ))   ⇒x+1=e^(i(a+2kπ)/6) ,k∈[0,5]  ⇒x_k =−1+e^(i((a+2kπ)/6))   2 )p(x)=Π_(k=0) ^5 (x−(−1+e^(i((a+2kπ)/6)) ))  p(x)=Π_(k=0) ^5 (x+1−e^(i((a+2kπ)/6)) )  over IR not possible only[if e^(ia) ∈IR⇒a=kπ  cause p(−1)=−e^(ia)
p(x)=0(x+1)6=eia(x+1)6=ei(a+2kπ)x+1=ei(a+2kπ)/6,k[0,5]xk=1+eia+2kπ62)p(x)=5k=0(x(1+eia+2kπ6))p(x)=5k=0(x+1eia+2kπ6)overIRnotpossibleonly[ifeiaIRa=kπcausep(1)=eia

Leave a Reply

Your email address will not be published. Required fields are marked *