Question Number 78489 by ~blr237~ last updated on 18/Jan/20

Answered by MJS last updated on 18/Jan/20
![2 roots with ab=1 ⇒ we have a square factor (x−a)(x−(1/a))=x^2 −(a+(1/a))x+1= [let a+(1/a)=A] =x^2 −Ax+1 ⇒ the other factor is x^3 +αx^2 +βx+56 x^5 −209x+56=(x^2 −Ax+1)(x^3 +αx^2 +βx+56) x^5 −209x+56=x^5 +(α−A)x^4 −(αA−β−1)x^3 −(βA−α−56)x^2 +(β−56A)x+56 ⇒ (1) α−A=0 (2) αA−β−1=0 (3) βA−α−56=0 (4) β−56A+209=0 ⇒ A=4 ⇒ a=2±(√3) ⇒ b=2∓(√3) α=4 β=15 ⇒ x^5 −209x+56= =(x−2−(√3))(x−2+(√3))(x^3 +4x^2 +15x+56) and we need Cardano′s method for the 2^(nd) factor](https://www.tinkutara.com/question/Q78512.png)
Commented by ~blr237~ last updated on 18/Jan/20

Commented by MJS last updated on 18/Jan/20

Commented by mr W last updated on 18/Jan/20

Commented by mr W last updated on 18/Jan/20

Commented by mr W last updated on 18/Jan/20

Commented by mr W last updated on 18/Jan/20
