Menu Close

let-p-x-x-in-n-n-n-with-n-integr-natural-1-find-the-roots-of-p-x-2-factorize-p-x-inside-C-x-3-decompose-the-fraction-F-x-1-p-x-




Question Number 69795 by mathmax by abdo last updated on 27/Sep/19
let p(x)=(x+in)^n −n^n  with n integr natural  1) find the roots of p(x)  2)factorize p(x) inside C[x]  3) decompose the fraction F(x)=(1/(p(x)))
letp(x)=(x+in)nnnwithnintegrnatural1)findtherootsofp(x)2)factorizep(x)insideC[x]3)decomposethefractionF(x)=1p(x)
Commented by mathmax by abdo last updated on 29/Sep/19
1)p(x)=0 ⇔(x+in)^n =n^n  ⇔(((x+in)^n )/n^n ) =1 ⇔(((x+in)/n))^n =1   ⇔((x/n)+i)^n =1  let z =(x/n)+i    (e)⇒z^n =1 ⇒z^n =e^(i(2kπ))  ⇒  z_k =e^((i2kπ)/n)   with k∈[[0,n−1]]   so we get nz_k =x_k +ni ⇒  x_k =n(z_k −i) =n(e^((i2kπ)/n) −i)    with0≤k≤n−1  2)  p(x) =aΠ_(k=0) ^(n−1) (x−x_k ) =aΠ_(k=0) ^(n−1) (x+ni−ne^((i2kπ)/n) )  we have p(x)=Σ_(k=0) ^n  C_n ^k  x^k (in)^(n−k)  −n^n   k=n ⇒a =C_n ^n  (in)^0 =1 ⇒p(x)=Π_(k=0) ^(n−1) (x+ni−ne^((i2kπ)/n) )  3) F(x)=(1/(p(x))) =(1/(Π_(k=0) ^(n−1) (x−x_k ))) =Σ_(k=0) ^(n−1)   (λ_k /(x−x_k ))  λ_k =(1/(p^′ (x_k )))
1)p(x)=0(x+in)n=nn(x+in)nnn=1(x+inn)n=1(xn+i)n=1letz=xn+i(e)zn=1zn=ei(2kπ)zk=ei2kπnwithk[[0,n1]]sowegetnzk=xk+nixk=n(zki)=n(ei2kπni)with0kn12)p(x)=ak=0n1(xxk)=ak=0n1(x+ninei2kπn)wehavep(x)=k=0nCnkxk(in)nknnk=na=Cnn(in)0=1p(x)=k=0n1(x+ninei2kπn)3)F(x)=1p(x)=1k=0n1(xxk)=k=0n1λkxxkλk=1p(xk)

Leave a Reply

Your email address will not be published. Required fields are marked *