Menu Close

let-S-n-k-1-n-1-k-k-1-calculate-S-n-interms-of-n-2-find-lim-n-S-n-




Question Number 69374 by mathmax by abdo last updated on 22/Sep/19
let S_n =Σ_(k=1) ^n  (((−1)^k )/k)  1) calculate S_n  interms of n  2) find lim_(n→+∞)  S_n
letSn=k=1n(1)kk1)calculateSnintermsofn2)findlimn+Sn
Commented by mathmax by abdo last updated on 15/Oct/19
1) S_n =W(−1) with w(x)=Σ_(k=1) ^n  (x^k /k)  w^′ (x) =Σ_(k=1) ^n  x^(k−1) =Σ_(k=0) ^(n−1)  x^k  =((x^n −1)/(x−1))  (we suppose x≠1)⇒  w(x)=∫_0 ^x  ((t^n −1)/(t−1))dt +c  with c=w(0)=0 ⇒w(x)=∫_0 ^x  (t^n /(t−1))dt−∫_0 ^x  (dt/(t−1))  =∫_0 ^x  (t^n /(t−1))dt −ln∣x−1∣⇒S_n =w(−1)=∫_0 ^(−1)  (t^n /(t−1))dt−ln(2)  t=−u give ∫_0 ^(−1)  (t^n /(t−1))dt =∫_0 ^1  (((−u)^n )/(−u−1))(−du) =(−1)^n ∫_0 ^1  (u^n /(1+u))du ⇒  S_n =(−1)^n  ∫_0 ^1  (u^n /(1+u))du−ln(2)  2)we have ∣ S_n +ln(2)∣ =∫_0 ^1  (u^n /(1+u))du≤∫_0 ^1  u^n  du =(1/(n+1)) ⇒  lim_(n→+∞) ∣S_n +ln(2)∣=0 ⇒lim_(n→+∞)  S_n =−ln(2).
1)Sn=W(1)withw(x)=k=1nxkkw(x)=k=1nxk1=k=0n1xk=xn1x1(wesupposex1)w(x)=0xtn1t1dt+cwithc=w(0)=0w(x)=0xtnt1dt0xdtt1=0xtnt1dtlnx1∣⇒Sn=w(1)=01tnt1dtln(2)t=ugive01tnt1dt=01(u)nu1(du)=(1)n01un1+uduSn=(1)n01un1+uduln(2)2)wehaveSn+ln(2)=01un1+udu01undu=1n+1limn+Sn+ln(2)∣=0limn+Sn=ln(2).

Leave a Reply

Your email address will not be published. Required fields are marked *