Question Number 69374 by mathmax by abdo last updated on 22/Sep/19
$${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{S}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \\ $$
Commented by mathmax by abdo last updated on 15/Oct/19
$$\left.\mathrm{1}\right)\:{S}_{{n}} ={W}\left(−\mathrm{1}\right)\:{with}\:{w}\left({x}\right)=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{x}^{{k}} }{{k}} \\ $$$${w}^{'} \left({x}\right)\:=\sum_{{k}=\mathrm{1}} ^{{n}} \:{x}^{{k}−\mathrm{1}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{x}^{{k}} \:=\frac{{x}^{{n}} −\mathrm{1}}{{x}−\mathrm{1}}\:\:\left({we}\:{suppose}\:{x}\neq\mathrm{1}\right)\Rightarrow \\ $$$${w}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:\frac{{t}^{{n}} −\mathrm{1}}{{t}−\mathrm{1}}{dt}\:+{c}\:\:{with}\:{c}={w}\left(\mathrm{0}\right)=\mathrm{0}\:\Rightarrow{w}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:\frac{{t}^{{n}} }{{t}−\mathrm{1}}{dt}−\int_{\mathrm{0}} ^{{x}} \:\frac{{dt}}{{t}−\mathrm{1}} \\ $$$$=\int_{\mathrm{0}} ^{{x}} \:\frac{{t}^{{n}} }{{t}−\mathrm{1}}{dt}\:−{ln}\mid{x}−\mathrm{1}\mid\Rightarrow{S}_{{n}} ={w}\left(−\mathrm{1}\right)=\int_{\mathrm{0}} ^{−\mathrm{1}} \:\frac{{t}^{{n}} }{{t}−\mathrm{1}}{dt}−{ln}\left(\mathrm{2}\right) \\ $$$${t}=−{u}\:{give}\:\int_{\mathrm{0}} ^{−\mathrm{1}} \:\frac{{t}^{{n}} }{{t}−\mathrm{1}}{dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(−{u}\right)^{{n}} }{−{u}−\mathrm{1}}\left(−{du}\right)\:=\left(−\mathrm{1}\right)^{{n}} \int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{u}^{{n}} }{\mathrm{1}+{u}}{du}\:\Rightarrow \\ $$$${S}_{{n}} =\left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{u}^{{n}} }{\mathrm{1}+{u}}{du}−{ln}\left(\mathrm{2}\right) \\ $$$$\left.\mathrm{2}\right){we}\:{have}\:\mid\:{S}_{{n}} +{ln}\left(\mathrm{2}\right)\mid\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{u}^{{n}} }{\mathrm{1}+{u}}{du}\leqslant\int_{\mathrm{0}} ^{\mathrm{1}} \:{u}^{{n}} \:{du}\:=\frac{\mathrm{1}}{{n}+\mathrm{1}}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \mid{S}_{{n}} +{ln}\left(\mathrm{2}\right)\mid=\mathrm{0}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} =−{ln}\left(\mathrm{2}\right). \\ $$$$ \\ $$