Menu Close

Let-S-N-n-1-N-1-n-1-n-3-Find-S-2N-in-terms-of-N-




Question Number 1067 by Yugi last updated on 30/May/15
Let         S_N =Σ_(n=1) ^N (−1)^(n−1) n^3  .  Find S_(2N)  in terms of N.
$${Let}\: \\ $$$$\:\:\:\:\:\:{S}_{{N}} =\underset{{n}=\mathrm{1}} {\overset{{N}} {\sum}}\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {n}^{\mathrm{3}} \:. \\ $$$${Find}\:{S}_{\mathrm{2}{N}} \:{in}\:{terms}\:{of}\:{N}.\: \\ $$$$ \\ $$
Answered by prakash jain last updated on 07/Jun/15
S_N =1^3 −2^3 +3^3 +.....+N^3   S_(2N) =Σ_(i=1) ^N (2i−1)^3 −Σ_(i=1) ^N (2i)^3   =Σ_(i=1) ^N 8i^3 −Σ_(i=1) ^N 1−Σ_(i=1) ^N 12i^2 +Σ_(i=1) ^N 6i−Σ_(i=1) ^N 8i^3   =−N−12((N(N+1)(2N+1))/6)−6(((N(N+1))/2))  =N−2N(N+1)(2N+1)−3N(N+1)
$${S}_{{N}} =\mathrm{1}^{\mathrm{3}} −\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} +…..+{N}^{\mathrm{3}} \\ $$$${S}_{\mathrm{2}{N}} =\underset{{i}=\mathrm{1}} {\overset{{N}} {\sum}}\left(\mathrm{2}{i}−\mathrm{1}\right)^{\mathrm{3}} −\underset{{i}=\mathrm{1}} {\overset{{N}} {\sum}}\left(\mathrm{2}{i}\right)^{\mathrm{3}} \\ $$$$=\underset{{i}=\mathrm{1}} {\overset{{N}} {\sum}}\mathrm{8}{i}^{\mathrm{3}} −\underset{{i}=\mathrm{1}} {\overset{{N}} {\sum}}\mathrm{1}−\underset{{i}=\mathrm{1}} {\overset{{N}} {\sum}}\mathrm{12}{i}^{\mathrm{2}} +\underset{{i}=\mathrm{1}} {\overset{{N}} {\sum}}\mathrm{6i}−\underset{{i}=\mathrm{1}} {\overset{{N}} {\sum}}\mathrm{8}{i}^{\mathrm{3}} \\ $$$$=−{N}−\mathrm{12}\frac{{N}\left({N}+\mathrm{1}\right)\left(\mathrm{2}{N}+\mathrm{1}\right)}{\mathrm{6}}−\mathrm{6}\left(\frac{{N}\left({N}+\mathrm{1}\right)}{\mathrm{2}}\right) \\ $$$$={N}−\mathrm{2}{N}\left({N}+\mathrm{1}\right)\left(\mathrm{2}{N}+\mathrm{1}\right)−\mathrm{3}{N}\left({N}+\mathrm{1}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *