Menu Close

let-the-matrix-A-1-2-0-3-1-calculate-A-n-for-n-integr-2-find-e-A-and-e-A-




Question Number 74019 by mathmax by abdo last updated on 17/Nov/19
let the matrix  A = (((1         2)),((0         −3)) )  1) calculate A^n   for n integr  2) find e^A   and e^(−A) .
letthematrixA=(1203)1)calculateAnfornintegr2)findeAandeA.
Commented by mathmax by abdo last updated on 18/Nov/19
the caracteristic polynom of A is  p(x)=det(A−xI) = determinant (((1−x      2)),((0        −3−x)))=−(3+x)(1−x)  =(x+3)(x−1) the propers value is λ_1 =−3  and λ_2 =1  V(λ_1 )=ker(A+3I)={u/(A+3I)u=0}  u ((x),(y) )    (A+3I)u=0  ⇔ (((4         2)),((0         0)) ) ((x),(y) )  =0 ⇒4x+2y =0 ⇒2x+y=0 ⇒  y=−2x ⇒(x,y)=(x,−2x)=x(1,−2) ⇒V(−3)=vet(e_1 ) with  e_1 (1,−2)  V(λ_1 )=Ker(A−I)={u /(A−I)u=0}  (A−I)u=0 ⇒ (((0         2)),((0         −4)) )  ((x),(y) )=0   ⇒y=0 ⇒(x,y)=x(1,0)  ⇒P = (((1         1)),((−2     0)) )    and  D = (((−3        0)),((0              1)) )  A =P DP^(−1)  ⇒ A^n =PD^n P^(−1)    we have  p_c (P)= determinant (((1−x         1)),((−2           −x)))=−x(1−x)+2 =x^2 −x +2  cayley hamilton ⇒p^2 −p +2I =0 ⇒p(p−I) =−2I ⇒  p{−(1/2)(p−I)} =I ⇒p^(−1) =(1/2){ I−p}  =(1/2){  (((1      0)),((0       1)) )  − (((1           1)),((−2       0)) )} =(1/2)  (((0            −1)),((2                 1)) )  A^n =(1/2) (((1          1)),((−2     0)) )   ((((−3)^n         0)),((0                    1)) )   (((0          −1)),((2              1)) )  =(1/2) ((((−3)^(n    )               1)),((−2(−3)^n            0)) )    (((0          −1)),((2              1)) )  =(1/2)  ((( 2                    1−(−3)^n )),((0                           2(−3)^n )) )  = (((1           ((1−(−3)^n )/2))),((0                    (−3)^n )) )
thecaracteristicpolynomofAisp(x)=det(AxI)=|1x203x|=(3+x)(1x)=(x+3)(x1)thepropersvalueisλ1=3andλ2=1V(λ1)=ker(A+3I)={u/(A+3I)u=0}u(xy)(A+3I)u=0(4200)(xy)=04x+2y=02x+y=0y=2x(x,y)=(x,2x)=x(1,2)V(3)=vet(e1)withe1(1,2)V(λ1)=Ker(AI)={u/(AI)u=0}(AI)u=0(0204)(xy)=0y=0(x,y)=x(1,0)P=(1120)andD=(3001)A=PDP1An=PDnP1wehavepc(P)=|1x12x|=x(1x)+2=x2x+2cayleyhamiltonp2p+2I=0p(pI)=2Ip{12(pI)}=Ip1=12{Ip}=12{(1001)(1120)}=12(0121)An=12(1120)((3)n001)(0121)=12((3)n12(3)n0)(0121)=12(21(3)n02(3)n)=(11(3)n20(3)n)
Commented by mathmax by abdo last updated on 18/Nov/19
2) e^A  =Σ_(n=0) ^∞  (A^n /(n!)) =  (((Σ_(n=0) ^∞  (1/(n!))           Σ_(n=0)  ((1−(−3)^n )/(2n!)))),((0                              Σ_(n=0) ^∞    (((−3)^n )/(n!)) )) )  =  (((  e            (1/2)(e−e^(−3) ))),((0                     e^(−3) )) )
2)eA=n=0Ann!=(n=01n!n=01(3)n2n!0n=0(3)nn!)=(e12(ee3)0e3)
Commented by mathmax by abdo last updated on 18/Nov/19
e^(−A)  =Σ_(n=0) ^∞  (((−1)^n )/(n!)) A^n  =Σ_(n=0) ^∞  (((−1)^n )/(n!))  (((1         ((1−(−3)^n )/2))),((0                 (−3)^n )) )  = (((  Σ_(n=0) ^∞   (((−1)^n )/(n!))          Σ_(n=0) ^∞  (((−1)^n )/(n!))  ((1−(−3)^n )/2))),((0                                       Σ_(n=0) ^∞    (((−1)^n (−3)^n )/(n!))                )) )  =  (((   e^(−1)                   (1/2)(  e^(−1) −e^3 )    )),((0                                        e^3                 )) )
eA=n=0(1)nn!An=n=0(1)nn!(11(3)n20(3)n)=(n=0(1)nn!n=0(1)nn!1(3)n20n=0(1)n(3)nn!)=(e112(e1e3)0e3)
Answered by mind is power last updated on 17/Nov/19
det(A−xI_2 )=0  let f(x,y)=(x+2y,−3y)  ⇒(1−x)(−3−x)=0⇒x∈{1,−3}  x=1  f(x,y)=(x,y)⇒y=0  e=(1,0)  f(x,y)=−3(x,y)⇒4x+2y=0⇒y=−2x  e_2 =(1,−2)  A=PDP^(−1)   P= (((1       1)),((0    −2)) ),P^− =−(1/2) (((−2      −1)),((0               1)) )  A=−(1/2) (((1      1)),((0    −2)) ). (((1      0)),((0 −3)) ). (((−2   −1)),((     0         1)) )  A^n =ePD^n P^−   e^A =Σ(A^k /(k!))=P(Σ_(k=0) ^(+∞) (D^k /(k!)).)P^− =P. (((e        0)),((0       e^(−3) )) ).P^−   e^(−A) =P(Σ_(k=0) ^(+∞) (((−D)^k )/(k!)))P^− =P. (((e^(−1)          0)),((0               e^3 )) ) P^−
det(AxI2)=0letf(x,y)=(x+2y,3y)(1x)(3x)=0x{1,3}x=1f(x,y)=(x,y)y=0e=(1,0)f(x,y)=3(x,y)4x+2y=0y=2xe2=(1,2)A=PDP1P=(1102),P=12(2101)A=12(1102).(1003).(2101)An=ePDnPeA=ΣAkk!=P(+k=0Dkk!.)P=P.(e00e3).PeA=P(+k=0(D)kk!)P=P.(e100e3)P
Commented by abdomathmax last updated on 18/Nov/19
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *