Menu Close

let-U-n-0-1-x-n-1-x-dx-calculate-U-n-U-n-1-




Question Number 78261 by msup trace by abdo last updated on 15/Jan/20
let U_n =∫_0 ^1  (x^n /(1+x))dx  calculate  U_n  +U_(n+1)
$${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{n}} }{\mathrm{1}+{x}}{dx}\:\:{calculate} \\ $$$${U}_{{n}} \:+{U}_{{n}+\mathrm{1}} \\ $$
Commented by jagoll last updated on 15/Jan/20
U_n +U_(n+1)  =∫ _0 ^(1 ) ((x^n +x^(n+1) )/(1+x)) dx  = ∫_0 ^1  ((x^n (1+x))/(1+x)) dx = (x^(n+1) /(n+1)) ∣_0 ^1   = (1/(n+1))
$${U}_{{n}} +{U}_{{n}+\mathrm{1}} \:=\int\underset{\mathrm{0}} {\overset{\mathrm{1}\:} {\:}}\frac{{x}^{{n}} +{x}^{{n}+\mathrm{1}} }{\mathrm{1}+{x}}\:{dx} \\ $$$$=\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{x}^{{n}} \left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}}\:{dx}\:=\:\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\:\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\:\frac{\mathrm{1}}{{n}+\mathrm{1}} \\ $$
Commented by mr W last updated on 16/Jan/20
U_n =?
$${U}_{{n}} =? \\ $$
Commented by john santu last updated on 16/Jan/20
U_n  = ∫_0 ^1  (x^n /(1+x)) dx = ∫_1 ^(2 ) (((u−1)^n )/u) du  = ∫_1 ^2  (( Σ_(r=0) ^n  C _r^n  u^(n−r)  (−1)^r )/u) du  = ∫_1 ^2  Σ_(r=0) ^n  C_r ^n  u^(n−r−1)  (−1)^r  du  = Σ_(r=0) ^n  C_r ^n  (−1)^r ×(u^(n−r) /(n−r)) ∣_1 ^2
$${U}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{n}} }{\mathrm{1}+{x}}\:{dx}\:=\:\int_{\mathrm{1}} ^{\mathrm{2}\:} \frac{\left({u}−\mathrm{1}\right)^{{n}} }{{u}}\:{du} \\ $$$$=\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{\:\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:{C}\:_{{r}} ^{{n}} \:{u}^{{n}−{r}} \:\left(−\mathrm{1}\right)^{{r}} }{{u}}\:{du} \\ $$$$=\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:{C}_{{r}} ^{{n}} \:{u}^{{n}−{r}−\mathrm{1}} \:\left(−\mathrm{1}\right)^{{r}} \:{du} \\ $$$$=\:\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:{C}_{{r}} ^{{n}} \:\left(−\mathrm{1}\right)^{{r}} ×\frac{{u}^{{n}−{r}} }{{n}−{r}}\:\mid_{\mathrm{1}} ^{\mathrm{2}} \: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *