Menu Close

let-U-n-0-1-x-n-1-x-dx-calculate-U-n-U-n-1-




Question Number 78261 by msup trace by abdo last updated on 15/Jan/20
let U_n =∫_0 ^1  (x^n /(1+x))dx  calculate  U_n  +U_(n+1)
letUn=01xn1+xdxcalculateUn+Un+1
Commented by jagoll last updated on 15/Jan/20
U_n +U_(n+1)  =∫ _0 ^(1 ) ((x^n +x^(n+1) )/(1+x)) dx  = ∫_0 ^1  ((x^n (1+x))/(1+x)) dx = (x^(n+1) /(n+1)) ∣_0 ^1   = (1/(n+1))
Un+Un+1=10xn+xn+11+xdx=10xn(1+x)1+xdx=xn+1n+101=1n+1
Commented by mr W last updated on 16/Jan/20
U_n =?
Un=?
Commented by john santu last updated on 16/Jan/20
U_n  = ∫_0 ^1  (x^n /(1+x)) dx = ∫_1 ^(2 ) (((u−1)^n )/u) du  = ∫_1 ^2  (( Σ_(r=0) ^n  C _r^n  u^(n−r)  (−1)^r )/u) du  = ∫_1 ^2  Σ_(r=0) ^n  C_r ^n  u^(n−r−1)  (−1)^r  du  = Σ_(r=0) ^n  C_r ^n  (−1)^r ×(u^(n−r) /(n−r)) ∣_1 ^2
Un=01xn1+xdx=12(u1)nudu=12nr=0Crnunr(1)rudu=12nr=0Crnunr1(1)rdu=nr=0Crn(1)r×unrnr12

Leave a Reply

Your email address will not be published. Required fields are marked *