Menu Close

let-U-n-k-0-n-1-k-2-k-1-find-a-equivalent-of-U-n-n-




Question Number 74352 by mathmax by abdo last updated on 22/Nov/19
let U_n =Σ_(k=0) ^n    (1/(k^2 +k+1))  find a equivalent of U_n    (n→+∞)
letUn=k=0n1k2+k+1findaequivalentofUn(n+)
Answered by mind is power last updated on 24/Nov/19
let f(z)=(π/(z^2 +z+1)).cot(z)  we can find the value of the som  pols of f are Z∪{j,j^− }  Res(f,n∈Z)=(1/(n^2 +n+1))  ∣f(z)∣≤((∣coth(Re(z))∣)/(∣z^2 +z+1∣))→0   ∣z∣→∞  ⇒∫_C_R  f(z)dz=0    Res th⇒2iπΣ_(n∈Z) Res(f,n)+2iπRes(f,j,j^− )  Res(f,j)=  (π/((j−j^− ))).((cos(πj))/(sin(πj)))=(π/(i(√3))).((cos(−(π/2)+i((√3)/2)))/(sin(−(π/2)+i(√(3/4)))))=−(π/(i(√3))).((sin(0.5i(√3)))/(cos(((i(√3))/2))))  −(π/( (√3))).th(((√3)/2))  Res(f,j^− )=(π/(j−j^− )).((cos(((−π)/2)−((i(√3))/2)))/(sin(−(π/2)−i((√3)/2))))=(π/(i(√3))).((−sin(((i(√3))/2)))/(−cos(((i(√3))/2))))=−(π/( (√3)))th(((√3)/2))  ⇒2iπΣ_(n∈Z) (1/(1+n+n^2 ))+2iπ(−((2π)/( (√3))).th(((√3)/2)))=0  ⇒Σ_(n∈Z) (1/(1+n+n^2 ))=((2π)/( (√3))).th(((√3)/2))  Σ_(n∈N) (1/(1+n+n^2 ))+Σ_(n∈N^∗ ) (1/(1−n+n^2 ))=Σ_(n∈Z) (1/(1+n+n^2 ))   ⇒Σ_(n∈N^∗ ) (1/(1−n+n^2 ))=Σ_(n∈N^∗ ) (1/((n−1)+1+(n−1)^2 ))=Σ_(n∈N) (1/(1+n+n^2 ))  ⇒2Σ_(n∈N) (1/(1+n+n^2 ))=((2π)/( (√3))).th(((√3)/2))⇒Σ_(n∈N) (1/(1+n+n^2 ))=(π/( (√3)))th(((√3)/2))
letf(z)=πz2+z+1.cot(z)wecanfindthevalueofthesompolsoffareZ{j,j}Res(f,nZ)=1n2+n+1f(z)∣⩽coth(Re(z))z2+z+10z∣→CRf(z)dz=0Resth2iπnZRes(f,n)+2iπRes(f,j,j)Res(f,j)=π(jj).cos(πj)sin(πj)=πi3.cos(π2+i32)sin(π2+i34)=πi3.sin(0.5i3)cos(i32)π3.th(32)Res(f,j)=πjj.cos(π2i32)sin(π2i32)=πi3.sin(i32)cos(i32)=π3th(32)2iπnZ11+n+n2+2iπ(2π3.th(32))=0nZ11+n+n2=2π3.th(32)nN11+n+n2+nN11n+n2=nZ11+n+n2nN11n+n2=nN1(n1)+1+(n1)2=nN11+n+n22nN11+n+n2=2π3.th(32)nN11+n+n2=π3th(32)
Commented by abdomathmax last updated on 24/Nov/19
thankx sir.
thankxsir.
Commented by mind is power last updated on 24/Nov/19
y′re welcom
yrewelcom
Commented by mathmax by abdo last updated on 24/Nov/19
f(z)=((πcotan(πz))/(z^2 +z+1))
f(z)=πcotan(πz)z2+z+1
Commented by mind is power last updated on 02/Dec/19
yes sir
yessir

Leave a Reply

Your email address will not be published. Required fields are marked *